Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự nhiên lục được cái này :'(
3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c
Xét: \(1+c^2=ab+bc+ca+c^2=\left(a+c\right)\left(b+c\right)\)
Tương tự CM được:
\(1+b^2=\left(a+b\right)\left(c+b\right)\) và \(1+a^2=\left(c+a\right)\left(b+a\right)\)
Mặt khác ta tách: \(\hept{\begin{cases}a-b=\left(a+c\right)-\left(b+c\right)\\b-c=\left(a+b\right)-\left(c+a\right)\\c-a=\left(c+b\right)-\left(a+b\right)\end{cases}}\)
Thay vào ta được:
\(Vt=\frac{\left(a+c\right)-\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}+\frac{\left(a+b\right)-\left(c+a\right)}{\left(a+b\right)\left(c+a\right)}+\frac{\left(c+b\right)-\left(a+b\right)}{\left(b+c\right)\left(a+b\right)}\)
\(=\frac{1}{b+c}-\frac{1}{c+a}+\frac{1}{c+a}-\frac{1}{a+b}+\frac{1}{a+b}-\frac{1}{b+c}\)
\(=0\)
=> đpcm
Áp dụng BĐT Cauchy cho 2 số dương \(\frac{a}{b^2}\) và \(\frac{1}{a}\) ta có :
\(\frac{a}{b^2}+\frac{1}{a}\ge2\sqrt{\frac{a}{b^2}\cdot\frac{1}{a}}=\frac{2}{b}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{a}{b^2}=\frac{1}{a}\Leftrightarrow a=b\)
+ Tương tự ta cm đc :
\(\frac{b}{c^2}+\frac{1}{b}\ge\frac{2}{c}\). Dấu "=" xảy ra <=> b = c
\(\frac{c}{a^2}+\frac{1}{c}\ge\frac{2}{a}\). Dấu "=" xảy ra <=> a = c
Do đó : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
=> đpcm
Dấu "=" xảy ra <=> a = b = c
Bạn có thể viết dưới dạng căn nhưng mà tớ không thích căn nên mới gọi nhá
Bạn có thể phóng to ra để xem ... tớ thử rồi ... nó vẫn nét
Mình xem phép làm câu 1 ạ.
Đề là?
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)
Chứng minh tương đương
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc - 9ab + 6b2 \(\le\)0 ( quy đồng ) (2)
Từ (1) <=> 2ac = ab + bc Thay vào (2) <=> 6ab + 6bc - 9bc - 9ab + 6b2 \(\le\)0
<=> a + c \(\ge\)2b
Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)
=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng
Dấu "=" xảy ra <=> a = c = b
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)
\(< =>\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(< =>\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(c+a\right)}{c+a}+\frac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)
\(< =>\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\) (chia cả 2 vế cho a+b+c)
Cho abc=0 thì không chứng minh được, a+b+c=0 là đủ rồi
Ta có: a+b+c=0 => a+b=-c
=>(a+b)2=(-c)2
=>a2+2ab+b2=c2
=>a2+b2-c2=-2ab
Tương tự ta có: b2+c2-a2=-2bc ; c2+a2-b2=-2ca
=>\(\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\) (đpcm)
Cho \(abc=0\)thì không chứng minh được, \(a+b+c=0\)là đủ rồi.
Ta có: \(a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Rightarrow a^2+2ab+b^2=c^2\)
\(\Rightarrow a^2+b^2-c^2=-2ab\)
Tương tự ta có: \(b^2+c^2-a^2=-2ab;c^2+a^2-b^2=-2ca\)
\(\Rightarrow\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\)