Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+b+c)(1/a+1/b+1/c)>=9
=>1+1+1+a/b+a/c+b/a+b/c+c/a+c/b>=9
=>(a/b+b/a)+(a/c+c/a)+(b/c+c/b)>=6
Áp dụng bất đẳng thức cauchy cho a/b và b/a ;b/c và c/b ; a/c và c/a
=>a/b+b/a>=2 (1)
a/c+c/a>=2 (2)
b/c+c/b>=2 (3)
Từ (1);(2) và (3) =>(a/b+b/a)+(a/c+c/a)+(b/c+c/b)>=6
Vậy (a+b+c)(1/a+1/b+1/c)>=9
Theo BĐT Cô si,ta có:
\(a+b+c\ge3\sqrt[3]{abc}\) (1)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\) (2)
Nhân theo vế (1) và (2),ta có:\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Chia cả hai vế cho abc,ta được: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}^{\left(đpcm\right)}\)
Cách khác :
Ta có : a + b + c = \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
⇔ 2( a + b + c) = \(2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
⇔ \(a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+a-2\sqrt{ac}+c=0\)
⇔ \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2=0\)
⇔ a = b = c
2) \(VT=\left(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\right)+3\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
Xét \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\) (1)
Xét \(3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\)
\(\Rightarrow3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge3.\frac{3}{2}=\frac{9}{2}\) (2)
Từ (1) và (2)
\(\Rightarrow VT\ge\frac{9}{2}+\frac{3}{2}=6\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
Áp dụng Bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)(Đpcm)