Cho hình chóp S.ABC có (SAB) và (SBC) vuông góc với (ABC), tam giác ABC đều, I là trung điểm AB. Tìm góc giữa (SAI) và (SBC)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Vì I là trung điểm B C ⇒ A I ⊥ B C
mà S A ⊥ A B C ⇒ S A ⊥ B C
Suy ra B C ⊥ S A I mà B C ⊂ S A C → S A I ⊥ S B C .
Chọn A
Cách 1:
Dễ thấy hai tam giác SAB và SAC bằng nhau (cạnh chung SA), gọi K là chân đường cao hạ từ A trong tam giác SAB
Từ giả thiết tam giác ABC vuông cân tại B ta được
Trong tam giác ICK vuông tại I có .
Như vậy Ik > IB (vô lý).
TH2: tương tự phần trên ta có
Do nên tam giác BIK vuông tại K và
Như vậy tam giác BKI đồng dạng với tam giác BHS suy ra:
Vậy thể tích của khối chóp S.ABC là
Cách 2: dùng phương pháp tọa độ hóa.
Chọn C.
Phương pháp:
Đưa về dựng khoảng cách từ M đến (SAB) với M là trung điểm của BC.
Cách giải:
Gọi M, N lần lượt là trung điểm của BC, AB.
Tự vẽ hình nhé:
a, Ta có: \(BC\perp AB\) (\(\Delta ABC\) vuông tại \(B\))
\(SA\perp BC\left(SA\perp\Delta ABC;BC\subset\left(ABC\right)\right)\)
\(AB\cap SA=\left\{A\right\}\)
\(AB,SA\subset\left(SAB\right)\)
\(\Rightarrow BC\perp\left(SAB\right)\)
b, Ta có \(BC\perp\left(SAB\right)\left(cmt\right)\)
mà \(SA\subset\left(SAB\right)\)
\(\Rightarrow BC\perp SA\)