Tìm GTLN của
x2 + 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = x( 5 - 3x ) = -3x2 + 5x = -3( x2 - 5/3x + 25/36 ) + 25/12
= -3( x - 5/6 )2 + 25/12 ≤ +25/12 ∀ x
Dấu "=" xảy ra khi x = 5/6
Vậy MaxA = 25/12 <=> x = 5/6
b) Từ x + y = 7 => x = 7 - y
Ta có : xy = ( 7 - y ).y = 7y - y2 = -( y2 - 7y + 49/4 ) + 49/4 = -( y - 7/2 )2 + 49/4 ≤ 49/4 ∀ y
Dấu "=" xảy ra <=> y = 7/2 => x = 7/2
Vậy Max(xy) = 49/4 <=> x = y = 7/2
( nếu cho x,y dương thì Cauchy nhanh gọn luôn :)) )
\(x^2-4x+7\)
⇔ \(\left(x^2-4x+4\right)+3\)
⇔ \(\left(x-2\right)^2+3\)
Vì \(\left(x-2\right)^2\ge0\) ⇒ \(\left(x-2\right)^2+3\ge3\)
Vậy GTNN của A là 3 khi x =2
\(x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=2
\(=-\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)+\dfrac{37}{4}=-\left(x+\dfrac{3}{2}\right)^2+\dfrac{37}{4}\le\dfrac{37}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
Lời giải:
Ta thấy: \(x-5\sqrt{x}+7=(\sqrt{x}-2,5)^2+0,75\geq 0,75\)
\(\Rightarrow P=\frac{1}{x-5\sqrt{x}+7}\leq \frac{1}{0,75}=\frac{4}{3}\)
Vậy $P_{\min}=\frac{4}{3}$. Giá trị này đạt tại $x=2,5^2=6,25$
A = 8 - (4\(x\) - 7)2
Vì (4\(x\) - 7)2 ≥ 0 ⇒ - (4\(x\) - 7)2 ≤ 0 ⇒ 8 - (4\(x\) - 7) ≤ 8
Vậy Amax = 8 xảy ra khi 4\(x\) - 7 = 0 ⇒ \(x\) = \(\dfrac{7}{4}\)
Kết luận giá trị lớn nhất của biểu thức là 8 xảy ra khi \(x\) = \(\dfrac{7}{4}\)
Đặt \(A=8-\left(4x-7\right)^2\)
Do \(\left(4x-7\right)^2\ge0\) với mọi \(x\in R\)
\(\Rightarrow-\left(4x-7\right)^2\le0\) với mọi \(x\in R\)
\(\Rightarrow8-\left(4x-7\right)^2\le8\) với mọi \(x\in R\)
Vậy GTLN của A là 8 khi \(x=\dfrac{7}{4}\)
có x2 >= 0 với mọi x
=> x2 +7 >= 7
dấu "=" xảy ra khi x2=0<=> x=0