K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2015

có x2 >= 0 với mọi x

=> x2 +7 >= 7 

dấu "=" xảy ra khi x2=0<=> x=0

27 tháng 1 2021

a) A = x( 5 - 3x ) = -3x2 + 5x = -3( x2 - 5/3x + 25/36 ) + 25/12

= -3( x - 5/6 )2 + 25/12 ≤ +25/12 ∀ x

Dấu "=" xảy ra khi x = 5/6

Vậy MaxA = 25/12 <=> x = 5/6

27 tháng 1 2021

b) Từ x + y = 7 => x = 7 - y

Ta có : xy = ( 7 - y ).y = 7y - y2 = -( y2 - 7y + 49/4 ) + 49/4 = -( y - 7/2 )2 + 49/4 ≤ 49/4 ∀ y

Dấu "=" xảy ra <=> y = 7/2 => x = 7/2

Vậy Max(xy) = 49/4 <=> x = y = 7/2

( nếu cho x,y dương thì Cauchy nhanh gọn luôn :)) )

24 tháng 2 2019

\(P=\frac{n+2}{n-7}=\frac{n-7+9}{n-7}=1+\frac{9}{n-7}\)

P max => \(\frac{9}{n-7}max\)=> n-7 min và n-7>0 vì 9>0 và không đổi

=> n-7=1 => n=8

Vậy....

26 tháng 2 2023

21 tháng 8 2021

\(x^2-4x+7\) 

⇔ \(\left(x^2-4x+4\right)+3\)

⇔  \(\left(x-2\right)^2+3\)

Vì \(\left(x-2\right)^2\ge0\) ⇒ \(\left(x-2\right)^2+3\ge3\)

Vậy GTNN của A là 3 khi x =2  

\(x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=2

8 tháng 11 2021

\(=-\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)+\dfrac{37}{4}=-\left(x+\dfrac{3}{2}\right)^2+\dfrac{37}{4}\le\dfrac{37}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
21 tháng 8 2021

Lời giải:

Ta thấy: \(x-5\sqrt{x}+7=(\sqrt{x}-2,5)^2+0,75\geq 0,75\)

\(\Rightarrow P=\frac{1}{x-5\sqrt{x}+7}\leq \frac{1}{0,75}=\frac{4}{3}\)

Vậy $P_{\min}=\frac{4}{3}$. Giá trị này đạt tại $x=2,5^2=6,25$

4 tháng 1 2024

A = 8 - (4\(x\) - 7)2 

Vì  (4\(x\) - 7)2 ≥ 0 ⇒ - (4\(x\) - 7)2 ≤ 0 ⇒ 8 - (4\(x\) - 7) ≤ 8 

Vậy Amax = 8 xảy ra khi 4\(x\) - 7 = 0 ⇒ \(x\) = \(\dfrac{7}{4}\)

Kết luận giá trị lớn nhất của biểu thức là 8 xảy ra khi \(x\) = \(\dfrac{7}{4}\)

4 tháng 1 2024

Đặt \(A=8-\left(4x-7\right)^2\)

Do \(\left(4x-7\right)^2\ge0\) với mọi \(x\in R\)

\(\Rightarrow-\left(4x-7\right)^2\le0\) với mọi \(x\in R\)

\(\Rightarrow8-\left(4x-7\right)^2\le8\) với mọi \(x\in R\)

Vậy GTLN của A là 8 khi \(x=\dfrac{7}{4}\)