K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AC=15cm

\(BH=\dfrac{BA\cdot BC}{AC}=7.2\left(cm\right)\)

b: Xét ΔBAC vuông tại B có BH là đườg cao

nên\(BC^2=CH\cdot CA\)

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

22 tháng 9 2015

BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6

\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)

\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)

AB=căn AH*AC=6(cm)

BC=căn AC^2-AB^2=căn 9^2-6^2=căn 45=3*căn 5(cm)

Xét ΔABC vuông tại B có sin C=AB/AC=6/9=2/3

nên góc C=42 độ

=>góc A=48 độ

9 tháng 5 2022

a, Xét Δ ABC và Δ CBH

Ta có : \(\widehat{ACB}=\widehat{CHB}=90^o\)

            \(\widehat{ABC}=\widehat{CBH}\) (góc chung)

=> Δ ABC ∾ Δ CBH (g.g)

b, Ta có : Δ ABC ∾ Δ CBH (cmt)

=> \(\dfrac{AB}{CB}=\dfrac{BC}{BH}\)

=> \(BC^2=AB.BH\)

9 tháng 5 2022

c,

Ta có : AB = AH + HB

=> AB = 4 + 9

=> AB = 13 (cm)

Ta có : \(BC^2=AB.BH\left(cmt\right)\)

=> \(BC^2=13.9\)

=> \(BC^2=117\)

=> BC = 10,8 (cm)

Xét Δ ABC

Ta có : \(AB^2=AC^2+BC^2\)

=> \(13^2=AC^2+10,8^2\)

=> \(169=AC^2+116,64\)

=> \(169-116,64=AC^2\)

=> \(52,36=AC^2\)

=> AC = 7,2 (cm)

Xét Δ ABC vuông tại C

=> \(S_{\Delta ABC}=\dfrac{AC.BC}{2}\)

=> \(S_{\Delta ABC}=\dfrac{7,2.10,8}{2}\)

=> \(S_{\Delta ABC}=38,88\left(cm^2\right)\)

1 tháng 9 2021

Ko bt lm tự lm đi e

 

1 tháng 9 2021

Hay ạ

BC=BH+CH=13cm

Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC; AB^2=BH*BC; AC^2=CH*BC

=>\(AH=\sqrt{4\cdot9}=6\left(cm\right);AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right);AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)

16 tháng 9 2021

\(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\left(pytago\right)\)

Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HB=\dfrac{AB^2}{BC}=3,24\left(cm\right)\\HC=\dfrac{AC^2}{BC}=10,24\left(cm\right)\\AH=\sqrt{3,24\cdot10,24}=5,76\left(cm\right)\end{matrix}\right.\)

16 tháng 9 2021

cam on ban

AB^2=BH*BC

=>BH(BH+9)=20^2=400

=>BH^2+9BH-400=0

=>(BH+25)(BH-16)=0

=>BH=16cm

AH=căn BH*CH=12(cm)

25 tháng 10 2021

\(CH=\dfrac{AH^2}{BH}=16\left(cm\right)\)

\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)

AC=20(cm)

\(\widehat{B}\simeq37^0\)

\(\widehat{C}\simeq53^0\)

25 tháng 10 2021

Áp dụng HTL:

\(CH=\dfrac{AH^2}{BH}=16\left(cm\right)\Rightarrow BC=BH+BC=25\left(cm\right)\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=15\left(cm\right)\\AC=\sqrt{CH\cdot BC}=20\left(cm\right)\end{matrix}\right.\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{20}{25}=\dfrac{4}{5}\approx53^0\Rightarrow\widehat{B}\approx53^0\\ \widehat{C}=90^0-\widehat{B}\approx90^0-53^0=37^0\)