x/5=y/7 và x*y=140
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{5}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)
\(x\cdot y=140\)
\(\Rightarrow5k\cdot7k=140\)
\(\Rightarrow35k^2=140\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
\(k=2\Rightarrow\hept{\begin{cases}x=2\cdot5=10\\y=2\cdot7=14\end{cases}}\)
\(k=-2\Rightarrow\hept{\begin{cases}x=-2\cdot5=-10\\y=-2\cdot7=-14\end{cases}}\)
\(7x=3y\)
\(\Rightarrow\frac{x}{3}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=3k\\y=7k\end{cases}}\)
\(\Rightarrow x\cdot y=3k\cdot7k=2100\)
\(\Rightarrow21k^2=2100\)
\(\Rightarrow k^2=100\)
\(\Rightarrow k=\pm10\)
\(k=10\Rightarrow\hept{\begin{cases}x=10\cdot3=30\\y=10\cdot7=70\end{cases}}\)
\(k=-10\Rightarrow\hept{\begin{cases}x=-10\cdot3=-30\\y=-10\cdot7=-70\end{cases}}\)
a: Đặt x/5=y/7=k
=>x=5k; y=7k
Ta có: xy=70
nên \(35k^2=70\)
\(\Leftrightarrow k^2=2\)
Trường hợp 1: \(k=\sqrt{2}\)
\(\Leftrightarrow x=5\sqrt{2};y=7\sqrt{2}\)
Trường hợp 2: \(k=-\sqrt{2}\)
\(\Leftrightarrow x=-5\sqrt{2};y=-7\sqrt{2}\)
b: Ta có: 5x=3y
nên x/3=y/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x-y}{2\cdot3-5}=11\)
Do đó: x=33; y=55
c: 7x=5y=140
=>x=20; y=28
d: Ta có: 2x=3y
nên x/3=y/2
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được;
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x-2y}{3-2\cdot2}=\dfrac{-7}{-1}=7\)
Do đó: x=21; y=14
\(\frac{x}{y}=\frac{5}{7}\Rightarrow\frac{x}{5}=\frac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{46}{12}=\frac{23}{6}\)
B tự làm nốt
Đặt \(\frac{x}{5}=\frac{y}{7}=k\Rightarrow x=5k;y=7k\)
Thay vào rồi tự tìm
\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)
Thay vào rồi tự tìm
Câu e tương tự
P/S: mk đang vội nên chỉ gợi ý thôi, b thông cảm
a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)
\(\Rightarrow xy=5k.7k\)
\(\Rightarrow140=35k^2\)
\(\Rightarrow k^2=4\)
\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với k = 2 ta có :
+) \(\frac{x}{5}=2\Rightarrow x=10\)
+) \(\frac{y}{7}=2\Rightarrow y=14\)
Với k = -2 ta có :
+) \(\frac{x}{5}=-2\Rightarrow x=-10\)
+) \(\frac{y}{7}=-2\Rightarrow y=-14\)
Vậy \(\left(x;y\right)=\left\{\left(10;14\right);\left(-10;-14\right)\right\}\)
b) Ta có :
\(x:y:z\)\(=\)\(2:5:7\)\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\)\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
+) \(\frac{x}{2}=3\Rightarrow x=6\)
+) \(\frac{y}{5}=3\Rightarrow y=15\)
+) \(\frac{z}{7}=3\Rightarrow z=21\)
Vậy x = 6, y = 15 và z = 21
_Chúc bạn học tốt_
a, x.y/5.7=140/35
=140/35=4
x/5=4/7
x/7=5/4
x.7=5.4
x.7=20
x=20;7
x=20/7
b,chịu
tk thì tk ko tk cx đc
a)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{25}=\dfrac{x+y}{5+25}=\dfrac{60}{30}=2\)
\(\Rightarrow\dfrac{x}{5}=2\Rightarrow x=2\times5=10\)
\(\Rightarrow\dfrac{y}{25}=2\Rightarrow y=2\times25=50\)
Vậy\(\left\{{}\begin{matrix}x=10\\y=50\end{matrix}\right.\)
b)
\(\dfrac{x}{5}=\dfrac{y}{7}\Rightarrow\left(\dfrac{x}{5}\right)^2=\left(\dfrac{y}{9}\right)^3\Rightarrow\dfrac{x}{5}\times\dfrac{x}{5}=\dfrac{x}{5}\times\dfrac{y}{7}=\dfrac{x\times y}{5\times7}=\dfrac{140}{35}=4=\left(2\right)^2\)
\(\Rightarrow\dfrac{x}{5}=2\Rightarrow x=2\times5=10\)
\(\Rightarrow\dfrac{y}{7}=2\Rightarrow y=2\times7=14\)
Vậy \(\left\{{}\begin{matrix}x=10\\y=14\end{matrix}\right.\)
Ta có \(\dfrac{x+5}{7}=\dfrac{40}{140}\)
\(\Leftrightarrow\dfrac{x+5}{7}=\dfrac{2}{7}\\ \Leftrightarrow x+5=2\\ \Leftrightarrow x=-3\)
Tương tự : \(\dfrac{-30}{5y+5}=\dfrac{40}{140}\)
\(\Leftrightarrow\dfrac{-6}{y+1}=\dfrac{2}{7}\\ \Leftrightarrow\left(y+1\right)\cdot2=-6\cdot7\\ \Leftrightarrow2y+2=-42\)
\(\Leftrightarrow2y=-44\\ \Leftrightarrow y=-22\)
Vậy..................................
*Lâu lâu mới làm 1 câu...nếu sai xin thông cảm...> . < ...*
Do \(\overline{X}=\dfrac{140}{2}=7\) nên :
\(\dfrac{5\cdot2+6x+7y+9\cdot3}{2+x+y+3}=\dfrac{140}{2}=7\)
\(\dfrac{37+6x+7y}{5+x+y}=\dfrac{140}{2}\)
\(\Leftrightarrow6x+7y+37=7\cdot\left(5+x+y\right)\)
\(\Leftrightarrow6x+7y+37=35+7x+7y\)
\(\Leftrightarrow6x-7x+7y-7y=35-37\)
\(\Leftrightarrow\left(-x\right)=\left(-2\right)\)
\(\Rightarrow x=2\)
\(\Rightarrow y=13\)
dat x/5=y/7=k
=)x=5k
y=7k(1)
Thay 1 vao bthuc xy=140 ta duoc
5k.7k=140
=)35.k^2=140
=)k^2=4
=)k=2 hoac k=-2
thay k=2 vao 1 ta duoc
x=5.2=10
y=7.2=14
thay k=-2 vao 1 ta dc
x=5.(-2)=-10
y=7.(-2)=-14
Có:\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{xy}{5y}=\dfrac{140}{5y}\)
\(\Rightarrow\dfrac{y}{7}=\dfrac{140}{5y}\Rightarrow5y^2=980\Rightarrow y^2=196\)
\(\Rightarrow\left[{}\begin{matrix}y=14\\y=-14\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{140}{14}=10\\x=\dfrac{140}{-14}=-10\end{matrix}\right.\)
Vậy có 2 cặp gt (x;y) t/m là: (10;14) ; (-10;-14)
mơn bn !