K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

\(ab+2bc+3ac\)

\(=ab+2bc+ac+2ac\)

\(=a\left(b+c\right)+2c\left(a+b\right)\)

\(=-a^2-2b^2\le0\) (đúng)

Dấu "=" khi \(x=y=z=0\)

31 tháng 3 2018

\(x=y=z=0?\)

27 tháng 3 2016

vì a+b+c=0 nên a,b,c lớn nhất chỉ có thể bằng ko,nên ab+2bc+3ca chỉ có thể < hoặc bằng 0

21 tháng 3 2017

Giải:

\(a+b+c=0\Rightarrow\left\{{}\begin{matrix}b+c=-a\\a+b=-c\end{matrix}\right.\)

\(\Rightarrow ab+2bc+3ca\)

\(=ab+ca+2bc+2ca\)

\(=a\left(b+c\right)+2c\left(a+b\right)\)

\(=a\left(-a\right)+2c\left(-c\right)\)

\(=-a^2-2c^2\le0\)

Vậy \(ab+2bc+3ca\le0\) (Đpcm)

21 tháng 3 2017

Ta có: a + b + c = 0 nên suy ra: b = – (a + c) thay vào biểu thức:

ab + 2bc + 3ca = -a.(a + c) – 2c.(a + c) + 3ac = -a² – ac – 2ac – 2c² + 3ac = – (a² + 2c²) ≤ 0 (đpcm).

25 tháng 2 2019

\(ab+2bc+3ac\)

\(=\left(ab+ac\right)+\left(2bc+2ac\right)\)

\(=a\left(b+c\right)+2c\left(a+b\right)\)

\(=-a^2-2c^2\le0\)

21 tháng 3 2020

Ta có : a + b + c = 0

\( \implies\) b + c = - a ; a + b = - c 

Ta có : ab + 2bc + 3ca 

= ab + 2bc + ca + 2ca 

= ( ab + ca ) + ( 2bc + 2ca )

= a ( b + c ) + 2c ( a + b )

= a ( - a ) + 2c ( - c ) 

= - a2 - 2c2 

= - ( a2 + 2c2 ) ( * )

Mà : a2 \(\geq\)  0 ; 2c2 \(\geq\)  0 

\( \implies\)  a2 + 2c2 \(\geq\)  0 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  - ( a2 + 2c2 )  \(\leq\)  0 

\( \implies\) ab + 2bc + 3ca  \(\leq\)  0 

18 tháng 3 2018

Ta có: a + b + c = 0 nên suy ra: b = – (a + c) thay vào biểu thức:

ab + 2bc + 3ca = -a.(a + c) – 2c.(a + c) + 3ac = -a² – ac – 2ac – 2c² + 3ac = – (a² + 2c²) ≤ 0 (đpcm).

hok tôts

21 tháng 3 2020

Ta có : a + b + c = 0

\( \implies\) b + c = - a ; a + b = - c 

Ta có : ab + 2bc + 3ca 

= ab + 2bc + ca + 2ca 

= ( ab + ca ) + ( 2bc + 2ca )

= a ( b + c ) + 2c ( a + b )

= a ( - a ) + 2c ( - c ) 

= - a2 - 2c2 

= - ( a2 + 2c2 ) ( * )

Mà : a2 \(\geq\)  0 ; 2c2 \(\geq\)  0 

\( \implies\)  a2 + 2c2 \(\geq\)  0 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  - ( a2 + 2c2 )  \(\leq\)  0 

\( \implies\) ab + 2bc + 3ca  \(\leq\)  0