K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2019

doi mik mot ty nha

27 tháng 7 2019

a) \(A=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{301}{3^{100}}\)

\(\Rightarrow3A=4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{100}}\)

\(\Rightarrow3A-A=\left(4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{99}}\right)-\left(\frac{4}{3}+\frac{7}{3^2}+...+\frac{301}{3^{100}}\right)\)

\(\Rightarrow2A=4+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{301}{3^{100}}\)

Đặt \(F=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3F=3+1+...+\frac{1}{3^{97}}\)

\(\Rightarrow3F-F=\left(3+...+\frac{1}{3^{97}}\right)-\left(1+...+\frac{1}{3^{98}}\right)\)

\(\Rightarrow2F=3-\frac{1}{3^{98}}< 3\)

\(\Rightarrow F< \frac{3}{2}\)

\(\Rightarrow2A< 4+\frac{3}{2}\)

\(\Rightarrow2A< \frac{11}{2}\)

\(\Rightarrow A< \frac{11}{4}\left(đpcm\right)\)

27 tháng 7 2019

2. \(B=\frac{11}{3}+\frac{17}{3^2}+\frac{23}{3^3}+...+\frac{605}{3^{100}}\)

\(\Rightarrow3B=11+\frac{17}{3}+\frac{23}{3^2}+...+\frac{605}{3^{99}}\)

\(\Rightarrow3B-B=\left(11+...+\frac{605}{3^{99}}\right)-\left(\frac{11}{3}+...+\frac{605}{3^{100}}\right)\)

\(\Rightarrow2B=11+2+\frac{2}{3}+...+\frac{2}{3^{98}}-\frac{605}{3^{100}}\)

Đặt \(D=2+\frac{2}{3}+...+\frac{2}{3^{98}}\)

\(\Rightarrow3D=6+2+...+\frac{2}{3^{97}}\)

\(\Rightarrow2D=6-\frac{2}{3^{98}}< 6\)( làm tắt )

\(\Rightarrow2D< 6\)

\(\Rightarrow D< 3\)

\(\Rightarrow2B< 11+3\)

\(\Rightarrow2B< 14\)

\(\Rightarrow B< 7\left(đpcm\right)\)

NV
19 tháng 2 2019

\(K=\dfrac{9-5}{3}+\dfrac{2.9-5}{3^2}+\dfrac{3.9-5}{3^3}+...+\dfrac{101.9-5}{3^{101}}\)

\(K=\dfrac{9}{3}+\dfrac{2.9}{3^2}+\dfrac{3.9}{3^3}+...+\dfrac{101.9}{3^{101}}-5\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)

\(K=9\left(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{101}{3^{101}}\right)-5\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)

\(K=9A-5B\)

Xét \(A=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{101}{3^{101}}\) (1)

\(\Rightarrow\dfrac{1}{3}A=\dfrac{1}{3^2}+\dfrac{2}{3^3}+\dfrac{3}{3^4}+...+\dfrac{100}{3^{101}}+\dfrac{101}{3^{102}}\) (2)

Trừ vế với vế (1) cho (2):

\(\dfrac{2}{3}A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}-\dfrac{101}{3^{102}}=B-\dfrac{101}{3^{102}}\)

\(\Rightarrow A=\dfrac{3}{2}\left(B-\dfrac{101}{3^{102}}\right)\Rightarrow K=\dfrac{27}{2}\left(B-\dfrac{101}{3^{102}}\right)-5B\)

\(\Rightarrow K=\dfrac{17}{2}B-\dfrac{27}{2}.\dfrac{101}{3^{102}}\)

Xét \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\)

\(\Rightarrow3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{90}}+\dfrac{1}{3^{100}}\)

\(\Rightarrow3B-1+\dfrac{1}{3^{101}}=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}=B\)

\(\Rightarrow2B=1-\dfrac{1}{3^{101}}\Rightarrow B=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{1}{3^{101}}\)

\(\Rightarrow K=\dfrac{17}{2}\left(\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{1}{3^{101}}\right)-\dfrac{27}{2}.\dfrac{101}{3^{102}}\)

\(\Rightarrow K=\dfrac{17}{4}-\dfrac{1}{3^{101}}\left(\dfrac{17}{4}+\dfrac{27.101}{6}\right)< \dfrac{17}{4}\) (đpcm)

30 tháng 10 2021

good job

 

26 tháng 7 2015

Dài quá, chả ai muốn làm, okay?

23 tháng 10 2017

toi meo 

a: \(\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}}{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}:\dfrac{13+\dfrac{13}{2}+\dfrac{13}{3}+\dfrac{13}{4}}{17-\dfrac{17}{2}+\dfrac{17}{3}-\dfrac{17}{4}}\)

\(=\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}}{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}\cdot\dfrac{17\left(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}{13\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)}=\dfrac{17}{13}\)

b: \(\dfrac{0.125-\dfrac{1}{5}+\dfrac{1}{7}}{0.375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0.2}{\dfrac{3}{4}+0.5-\dfrac{3}{10}}\)

\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{8}-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{4}+\dfrac{3}{6}-\dfrac{3}{10}}\)

\(=\dfrac{1}{3}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{2}\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}\right)}=\dfrac{1}{3}+\dfrac{2}{3}=1\)