tính nhanh
B=\(\left(\dfrac{1}{3}-1\right)+\left(\dfrac{1}{6}-1\right)+\left(\dfrac{1}{10}-1\right)+...+\left(\dfrac{1}{45}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(-0,75-\dfrac{1}{4}\right):\left(-5\right)+\dfrac{1}{48}-\left(-\dfrac{1}{6}\right):\left(-3\right)\)
\(A=\left(-0,75-0,25\right):\left(-5\right)+\dfrac{1}{48}-\left(-\dfrac{1}{6}\right)\cdot\dfrac{-1}{3}\)
\(A=\left(-1\right):\left(-5\right)+\dfrac{1}{48}-\dfrac{1}{18}\)
\(A=\dfrac{1}{5}+\dfrac{1}{48}-\dfrac{1}{18}\)
\(A=\dfrac{119}{720}\)
b) \(B=\left(\dfrac{6}{25}-1,24\right):\dfrac{3}{7}:\left[\left(3\dfrac{1}{2}-3\dfrac{2}{3}\right):\dfrac{1}{14}\right]\)
\(B=\left(0,24-1,24\right):\dfrac{3}{7}:\left[\left(\dfrac{7}{2}-\dfrac{11}{3}\right):\dfrac{1}{14}\right]\)
\(B=-1:\dfrac{3}{7}:\left(-\dfrac{1}{6}:\dfrac{1}{14}\right)\)
\(B=-\dfrac{7}{3}:-\dfrac{7}{3}\)
\(B=1\)
a, A = (-0,75 - \(\dfrac{1}{4}\)) : (-5) + \(\dfrac{1}{48}\) - (- \(\dfrac{1}{6}\)) : (-3)
A = -(0,75 + 0,25): (-5) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)
A = -1 : (-5) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)
A = \(\dfrac{1}{5}\) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)
A = \(\dfrac{53}{240}\) - \(\dfrac{1}{18}\)
A = \(\dfrac{119}{720}\)
b, B = (\(\dfrac{6}{25}\) - 1,24): \(\dfrac{3}{7}\): [(3\(\dfrac{1}{2}\) - 3\(\dfrac{2}{3}\)): \(\dfrac{1}{14}\)]
B = (0,24 - 1,24): \(\dfrac{3}{7}\):[(\(\dfrac{7}{2}\)-\(\dfrac{11}{3}\)): \(\dfrac{1}{14}\)]
B = -1: \(\dfrac{3}{7}\):[ (-\(\dfrac{1}{6}\) : \(\dfrac{1}{14}\))]
B = -1: \(\dfrac{3}{7}\): (- \(\dfrac{7}{3}\))
B = 1 \(\times\) \(\dfrac{7}{3}\) \(\times\) \(\dfrac{3}{7}\)
B = 1
\(a.=\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{5}{3}+\dfrac{3}{2}+\dfrac{7}{3}-\dfrac{5}{2}=\dfrac{1+3-5}{2}-\dfrac{2+5-7}{3}=\dfrac{-1}{2}\)
\(b.\left(\dfrac{3}{4}-1\dfrac{1}{6}\right)^2:\sqrt{\dfrac{25}{144}}=\left(-\dfrac{5}{12}\right)^2:\dfrac{5}{12}=\dfrac{5}{12}\)
\(\dfrac{\left(\dfrac{5}{30}+\dfrac{3}{30}+\dfrac{2}{30}\right):\left(\dfrac{5}{30}+\dfrac{3}{30}-\dfrac{2}{30}\right)}{\left(\dfrac{30}{60}-\dfrac{20}{60}+\dfrac{15}{60}-\dfrac{12}{60}\right):\left(\dfrac{3}{12}-\dfrac{2}{12}\right)}=\dfrac{\dfrac{1}{3}:\dfrac{1}{5}}{\dfrac{13}{60}:\dfrac{1}{12}}=\dfrac{\dfrac{1}{3}\times5}{\dfrac{13}{60}\times12}=\dfrac{\dfrac{5}{3}}{\dfrac{13}{5}}=\dfrac{25}{39}\)
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right).......\left(1-\dfrac{1}{10}\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right).........\left(\dfrac{10}{10}-\dfrac{1}{10}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}......\dfrac{9}{10}\)
\(=\dfrac{1}{10}\)
\(\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{6}\right).\left(1-\dfrac{1}{10}\right).\left(1-\dfrac{1}{15}\right)...\left(1-\dfrac{1}{780}\right)\)
\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}...\dfrac{779}{780}\)
\(=\dfrac{4}{6}.\dfrac{10}{12}.\dfrac{18}{20}...\dfrac{1558}{1560}\)
\(=\dfrac{4.10.18...1558}{6.12.20...1560}\)
\(=\dfrac{41}{39}.3\)
\(=\dfrac{41}{11}\)
\(B=\left(\dfrac{1}{3}-1\right)+\left(\dfrac{1}{6}-1\right)+\left(\dfrac{1}{10}-1\right)+...+\left(\dfrac{1}{45}-1\right)\)
Quy luật dãy số \(B=\left(\dfrac{1}{1+2}-1\right)+\left(\dfrac{1}{1+2+3}-1\right)+\left(\dfrac{1}{1+2+3+4}-1\right)+...+\left(\dfrac{1}{1+2+..+9}-1\right)\)\(B=\left(\dfrac{1}{1+2}\right)+\left(\dfrac{1}{1+2+3}\right)+\left(\dfrac{1}{1+2+3+4}\right)+...+\left(\dfrac{1}{1+2+..+9}\right)-8\)\(B=B_1-8\)
\(\dfrac{B_1}{2}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{2}-\dfrac{1}{10}\)
\(B_1=1-\dfrac{1}{5}\)
\(B=1-\dfrac{1}{5}-8=-8-\dfrac{1}{5}=-\dfrac{41}{5}\)