Cho 2 số thực dương x,y,z thảo mãn : xyz=1. Tìm giá trị lớn nhất của biểu thức :
\(P=\sum\dfrac{1}{\left(3x+1\right)\left(y+z\right)+x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\dfrac{xyz}{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}=\dfrac{1}{8}\)
Dấu "=" xảy ra khi \(x=y=z\)
Lời giải:
Sửa: $x^2\geq y^2+z^2$
Áp dụng BĐT Cauchy-Schwarz:
$P\geq \frac{y^2+z^2}{x^2}+\frac{7x^2}{2}.\frac{4}{y^2+z^2}+2007$
$=\frac{y^2+z^2}{x^2}+\frac{14x^2}{y^2+z^2}+2007$
$=\frac{y^2+z^2}{x^2}+\frac{x^2}{y^2+z^2}+\frac{13x^2}{y^2+z^2}+2007$
$\geq 2+\frac{13x^2}{y^2+z^2}+2007$ (áp dụng BĐT Cô-si)
$\geq 2+13+2007=2022$ (do $x^2\geq y^2+z^2$)
Vậy $P_{\min}=2022$
\(E= {\sum {(yz)^2 \over xy+zx}}\)>=3/2 (AD BĐT Nesbit)
Dấu = xảy ra <=>x=y=z=1
đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow abc=\frac{1}{xyz}=1\)
Ta có : \(x+y=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=c\left(a+b\right)\)
Tương tự : \(y+z=a\left(b+c\right);x+z=b\left(c+a\right)\)
\(\Rightarrow E=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)
\(\Rightarrow E\ge\frac{3}{2}\)
Vậy GTNN của E là \(\frac{3}{2}\Leftrightarrow x=y=z=1\)
chia cả 2 vế của giả thiết cho xyz rồi đặt 1/x ; 1/y ; 1/z => a ; b ; c
đến đây thì tự làm tiếp đi
Hi anh trai, nhớ em là ai chứ :))
Áp dụng BĐT AM - GM: \(x+y+z\ge3\sqrt[3]{xyz}=3\)
\(P=\Sigma\dfrac{1}{\left(3x+1\right)\left(y+z\right)+x}\) \(=\Sigma\dfrac{1}{3x\left(y+z\right)+x+y+z}\)
\(\Rightarrow P\le\Sigma\dfrac{1}{3x\left(y+z\right)+3}\)
\(\Leftrightarrow3P\le\Sigma\dfrac{1}{x\left(y+z\right)+1}\)
Chia cả hai vế cho \(xyz=1\)
\(\Leftrightarrow3P\le\Sigma\dfrac{1}{\dfrac{1}{y}+\dfrac{1}{z}+1}\)
Đặt \(a=\sqrt[3]{\dfrac{1}{x^3}},b=\sqrt[3]{\dfrac{1}{y^3}},c=\sqrt[3]{\dfrac{1}{z^3}}\)
\(\Rightarrow a.b.c=1\)
\(\Rightarrow3P\le\Sigma\dfrac{1}{a^3+b^3+1}\)
Mặt khác: \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-ab+b^2\ge ab\)
Nhân cả hai vế cho \(a+b\)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+1\ge ab\left(a+b\right)+1=ab\left(a+b\right)+abc\)
\(\Leftrightarrow a^3+b^3+1\ge ab\left(a+b+c\right)\)
\(\Leftrightarrow3P\le\Sigma\dfrac{1}{ab\left(a+b+c\right)}=1\)
\(\Leftrightarrow P\le\dfrac{1}{3}\)
Dấu ''='' xảy ra \(\Leftrightarrow x=y=z=1\)