K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

Hi anh trai, nhớ em là ai chứ :))

Áp dụng BĐT AM - GM: \(x+y+z\ge3\sqrt[3]{xyz}=3\)

\(P=\Sigma\dfrac{1}{\left(3x+1\right)\left(y+z\right)+x}\) \(=\Sigma\dfrac{1}{3x\left(y+z\right)+x+y+z}\)

\(\Rightarrow P\le\Sigma\dfrac{1}{3x\left(y+z\right)+3}\)

\(\Leftrightarrow3P\le\Sigma\dfrac{1}{x\left(y+z\right)+1}\)

Chia cả hai vế cho \(xyz=1\)

\(\Leftrightarrow3P\le\Sigma\dfrac{1}{\dfrac{1}{y}+\dfrac{1}{z}+1}\)

Đặt \(a=\sqrt[3]{\dfrac{1}{x^3}},b=\sqrt[3]{\dfrac{1}{y^3}},c=\sqrt[3]{\dfrac{1}{z^3}}\)

\(\Rightarrow a.b.c=1\)

\(\Rightarrow3P\le\Sigma\dfrac{1}{a^3+b^3+1}\)

Mặt khác: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-ab+b^2\ge ab\)

Nhân cả hai vế cho \(a+b\)

\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+1\ge ab\left(a+b\right)+1=ab\left(a+b\right)+abc\)

\(\Leftrightarrow a^3+b^3+1\ge ab\left(a+b+c\right)\)

\(\Leftrightarrow3P\le\Sigma\dfrac{1}{ab\left(a+b+c\right)}=1\)

\(\Leftrightarrow P\le\dfrac{1}{3}\)

Dấu ''='' xảy ra \(\Leftrightarrow x=y=z=1\)

NV
8 tháng 4 2022

\(\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\dfrac{xyz}{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}=\dfrac{1}{8}\)

Dấu "=" xảy ra khi \(x=y=z\)

AH
Akai Haruma
Giáo viên
28 tháng 5 2022

Lời giải:

Sửa: $x^2\geq y^2+z^2$
Áp dụng BĐT Cauchy-Schwarz:

$P\geq \frac{y^2+z^2}{x^2}+\frac{7x^2}{2}.\frac{4}{y^2+z^2}+2007$

$=\frac{y^2+z^2}{x^2}+\frac{14x^2}{y^2+z^2}+2007$

$=\frac{y^2+z^2}{x^2}+\frac{x^2}{y^2+z^2}+\frac{13x^2}{y^2+z^2}+2007$

$\geq 2+\frac{13x^2}{y^2+z^2}+2007$ (áp dụng BĐT Cô-si)

$\geq 2+13+2007=2022$ (do $x^2\geq y^2+z^2$)

Vậy $P_{\min}=2022$

 

26 tháng 4 2020

\(E= {\sum {(yz)^2 \over xy+zx}}\)>=3/2 (AD BĐT Nesbit)

Dấu = xảy ra <=>x=y=z=1

26 tháng 4 2020

đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow abc=\frac{1}{xyz}=1\)

Ta có : \(x+y=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=c\left(a+b\right)\)

Tương tự : \(y+z=a\left(b+c\right);x+z=b\left(c+a\right)\)

\(\Rightarrow E=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)

\(\Rightarrow E\ge\frac{3}{2}\)

Vậy GTNN của E là \(\frac{3}{2}\Leftrightarrow x=y=z=1\)

20 tháng 2 2018

đáp án

Không có văn bản thay thế tự động nào.

8 tháng 1 2021

chia cả 2 vế của giả thiết cho xyz rồi đặt 1/x ; 1/y ; 1/z => a ; b ; c

đến đây thì tự làm tiếp đi