Tìm giá trị lớn nhất của biểu thức :\(N=x+\sqrt{2-x}\)
Giups ạ!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk: \(2\le x\le4\)
Áp dụng BĐT bunhiacopxki có:
\(P^2=\left(\sqrt{x-2}+3\sqrt{4-x}\right)^2\le\left(1+3^2\right)\left(x-2+4-x\right)\)
\(\Leftrightarrow P^2\le20\)\(\Leftrightarrow P\le2\sqrt{5}\)
Dấu "=" xảy ra khi \(\sqrt{x-2}=\dfrac{\sqrt{4-x}}{3}\) \(\Leftrightarrow x=\dfrac{11}{5}\) (tm đk)
Có \(P^2=8\left(4-x\right)+6\sqrt{\left(x-2\right)\left(4-x\right)}+2\ge2\)\(\Rightarrow P\ge\sqrt{2}\)
Dấu "=" xảy ra khi x=4 (tm)
ĐK: \(x\ge0\)
+) Với x = 0 => A = 0
+) Với x khác 0
Ta có: \(\frac{1}{A}=\frac{3}{4}\sqrt{x}-\frac{3}{4}+\frac{3}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{3}{4}\ge\frac{3}{4}.2-\frac{3}{4}=\frac{3}{4}\)
=> \(A\le\frac{4}{3}\)
Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1
Vậy max A = 4/3 tại x = 1
Còn có 1 cách em quy đồng hai vế giải đenta theo A thì sẽ tìm đc cả GTNN và GTLN
Ta có:
\(P=\frac{x+12}{\sqrt{x}+2}=\sqrt{x}-2+\frac{16}{\sqrt{x}+2}\)
\(=\left(\sqrt{x}+2\right)+\frac{16}{\sqrt{x}+2}-4\ge2\sqrt{\left(\sqrt{x}+2\right).\frac{16}{\sqrt{x}+2}}-4=4\)
Dấu "=" xảy ra <=> \(\sqrt{x}+2=\frac{16}{\sqrt{x}+2}\Leftrightarrow\sqrt{x}+2=4\Leftrightarrow x=4\) thỏa mãn
=> min P = 4 tại x = 4.
Ta có:
\(A=\sqrt{4\sqrt{x}-x}\) (ĐK: \(16\ge x\ge0\))
Mà: \(\sqrt{4\sqrt{x}-x}\ge0\forall x\)
Dấu "=" xảy ra:
\(4\sqrt{x}-x=0\)
\(\Leftrightarrow4\sqrt{x}-\left(\sqrt{x}\right)^2=0\)
\(\Leftrightarrow\sqrt{x}\left(4-\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\4-\sqrt{x}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
Vậy: \(A_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
Ta có:\(N=x+\sqrt{2-x}=-\left(2-x\right)+\sqrt{2-x}+2\)
Đặt:2-x=m ta có:
\(N=-t+\sqrt{t}+2=-\left(t-2.\frac{1}{2}.\sqrt{t}+\frac{1}{4}\right)+\frac{9}{4}\)
\(=-\left(\sqrt{t}-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
\(\Rightarrow GTLN\) của N là:\(\frac{9}{4}\) đạt được khi \(\sqrt{t}-\frac{1}{2}=0\Leftrightarrow\sqrt{t}=\frac{1}{2}\Rightarrow t=\frac{1}{4}\)
Đkxđ \(x\le2\).
Xét \(N-2=x-2+\sqrt{2-x}\)
Đặt \(\sqrt{2-x}=t\left(t\ge0\right)\)
Ta có \(N-2=-t^2+t=-\left(t-\frac{1}{2}\right)^2+\frac{1}{4}\).
Suy ra \(N-2\le\frac{1}{4}\) hay GTLN của \(N-2=\frac{1}{4}\) khi \(-\left(t-\frac{1}{2}\right)^2=0\Leftrightarrow t=\frac{1}{2}\).
Vậy GTLN của \(N=2+\frac{1}{4}=\frac{9}{4}\) khi \(t=\sqrt{2-x}=\frac{1}{2}\Leftrightarrow2-x=\frac{1}{4}\)\(\Leftrightarrow x=\frac{7}{4}\).
Ta có:
\(A=\sqrt{1-x}+\sqrt{1+x}\) \(\left(-1\le x\le1\right)\)
\(=1.\sqrt{1-x}+1.\sqrt{1+x}\)
Áp dụng BĐT Bunhiacopxki, ta có:
\(A=1.\sqrt{1-x}+1.\sqrt{1+x}\)
\(\le\sqrt{\left(1^2+1^2\right).\left(1-x+1+x\right)}=\sqrt{2.2}=2\)
Vậy \(A_{max}=2\), đạt được khi và chỉ khi \(\dfrac{1}{\sqrt{1-x}}=\dfrac{1}{\sqrt{1+x}}\Leftrightarrow1-x=1+x\Leftrightarrow x=0\)
\(x\ge0\Rightarrow1-2\sqrt{x}\le1\) => Max là 1
\(x\ge0\Rightarrow\sqrt{x}+3\ge3\) => Min là 3
\(\Rightarrow Max=\dfrac{1}{3}\)
( Vì mẫu số càng lớn thì số đó càng nhỏ )
ĐK \(x\le2\)Đặt \(\sqrt{2-x}=t\Rightarrow2-x=t^2\)\(\Rightarrow x=2-t^2\)ta có
\(N=2-t^2+t\)\(=-\left(t^2-2t\frac{1}{2}+\frac{1}{4}\right)+\frac{9}{4}=-\left(t-\frac{1}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}\)
Vì \(-\left(t-\frac{1}{2}\right)^2\le0\)
Dấu = xảy ra khi và chỉ khi \(t-\frac{1}{2}=0\Rightarrow t=\frac{1}{2}\Rightarrow\sqrt{2-x}=\frac{1}{2}\Leftrightarrow2-x=\frac{1}{4}\Rightarrow x=\frac{7}{4}\)tmđk
Vậy MaxN=9/4 <=> x=7/4