K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2021

TAO ĐELL HIỂU

8 tháng 9 2021

sao mày ngu thế hở con

8 tháng 9 2021

2021/2022=(2022-1)/2022=1-1/2022

 2022/2023=(2023-1)/2023=1-1/2023

Do: 2022<2023

=>1/2022>1/2023

=>1-1/2022<1-1/2023

Vậy 2021/2022 < 2022/2023

8 tháng 9 2021

\(\frac{2021}{2022}< \frac{2022}{2023}\)

@Cỏ

#Forever

2020/2021<1

2021/2022<1

2022/2023<1

2023/2020=1+1/2020+1/2020+1/2020>1+1/2021+1/2022+1/2023

=>B>2020/2021+2021/2022+2022/2023+1/2021+1/2022+1/2023+1=4

a: \(B=\dfrac{154}{155+156}+\dfrac{155}{155+156}\)

\(\dfrac{154}{155}>\dfrac{154}{155+156}\)

\(\dfrac{155}{156}>\dfrac{155}{155+156}\)

=>154/155+155/156>(154+155)/(155+156)

=>A>B

b: \(C=\dfrac{2021+2022+2023}{2022+2023+2024}=\dfrac{2021}{6069}+\dfrac{2022}{6069}+\dfrac{2023}{6069}\)

2021/2022>2021/6069

2022/2023>2022/2069

2023/2024>2023/6069

=>D>C

29 tháng 10 2023

Ta có:

\(2023^{2022}=2023\cdot2023^{2021}\)

\(2022^{2022}+2022^{2021}=2022^{2021}\cdot\left(2022+1\right)=2023\cdot2022^{2021}\)

Mà: \(2023>2022\)

\(\Rightarrow2023^{2021}>2022^{2021}\)

\(\Rightarrow2023^{2021}\cdot2023>2022^{2021}\cdot2023\)

\(\Rightarrow2023^{2022}>2022^{2022}+2022^{2021}\) 

Vậy: ... 

2 tháng 5 2022

sửa rồi đó ạ

 

23 tháng 8 2021

Nhỏ hơn

Ta có 2020/2021 <1

         2021/2022 <1

         2022/2023 <1

         2023/2024 <1

Suy ra A=(2021/2021+2021/2022 +2022/2023 +2023/2024) < (1+1+1+1)= 4

      Vậy A <4

Chúc bạn học tốt

\(\dfrac{2020}{2021}< 1\)

\(\dfrac{2021}{2022}< 1\)

\(\dfrac{2021}{2022}< 1\)

\(\dfrac{2023}{2024}< 1\)

Do đó: A<4

29 tháng 8 2023


Không cần tính, ta thấy : 2022/2021 > 2021/2022
Vậy : 2022/2021*2023 > 2021/2022*2022

19 tháng 2 2022

giúp vơi

 

 

19 tháng 2 2022

noooooooooooooooooooooooooooooooooooooooooooooooooo

3 tháng 5 2023

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022

B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\) 

B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\) 

B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))

Vậy B > C