Cho ΔABC nội tiếp (O) đường cao AI, BN cắt nhau tại H . CH cắt AB tại M .
a, CM : AMHN nội tiếp
b, Điểm H cách đều các đường thẳng MN và NI
c, CM : MN = BC . cos góc BAC biết góc BAC = 45 độ Diện tích Δ ABC = 100 cm2 Tính diện tích ΔANM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác AMHN có \(\widehat{AMH}+\widehat{ANH}=180^0\)
nên AMHN là tứ giác nội tiếp
2: Ta có: \(\widehat{MNH}=\widehat{BAI}\)
\(\widehat{INH}=\widehat{MCB}\)
mà \(\widehat{BAI}=\widehat{MCB}\)
nên \(\widehat{MNH}=\widehat{INH}\)
hay NH là phân giác của góc MNI
Ta có: \(\widehat{NMH}=\widehat{CAI}\)
\(\widehat{IMH}=\widehat{NCB}\)
mà \(\widehat{CAI}=\widehat{NCB}\)
nên \(\widehat{NMH}=\widehat{IMH}\)
hay MH là tia phân giác của góc NMI
Xét ΔMNI có
MH là phân giác
NH là phân giác
Do đó: H là tâm đường tròn nội tiếp ΔMNI
=>H cách đều NM và MI
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng với ΔACB
b: MF/MB=HF/HB
NE/NC=HE/HC
Xét ΔHFE và ΔHBC có
góc HFE=góc HBC
góc FHE=góc BHC
=>ΔHFE đồng dạng với ΔHBC
=>HF/HB=HE/HC
=>MF/MB=NE/NC
a.
Xét tứ giác CDHE có:
\(\widehat{CDH}+\widehat{CEH}=90^o+90^o=180^o\)
Do đó: tứ giác CDHE là tứ giác nội tiếp.
b. Gọi I là trung điểm của HC
=> I là tâm đường tròn ngoại tiếp tam giác DEC
Có: EM là trung tuyến tam giác vuông BEA
=> \(\widehat{MEB}=\widehat{MBE}\)
EI là trung tuyến tam giác vuông HEC
=> \(\widehat{IEH}=\widehat{IHE}\)
Mà: \(\widehat{MBE}=\widehat{ECH}\) (cùng phụ \(\widehat{BAC}\) )
=> \(\widehat{MEI}=\widehat{MEH}+\widehat{IEH}=\widehat{ECH}+\widehat{EHI}=90^o\)
=> ME vuông góc EI hay ME là tiếp tuyến của đường tròn ngoại tiếp tam giác CDE.
c. Xét tam giác vuông BDH và tam giác vuông ADC có:
\(\widehat{BHD}=\widehat{ACD}\) (cùng phụ \(\widehat{HBD}\) )
=> \(\Delta BDH\sim\Delta ADC\)
=> \(\dfrac{BD}{DA}=\dfrac{DH}{DC}\)
<=> \(DH.DA=BD.DC\le\left(\dfrac{BD+DC}{2}\right)^2=\dfrac{BC^2}{4}=\dfrac{3R^2}{4}\)
\(DH.DA\) max \(=\dfrac{3R^2}{4}\) khi và chỉ khi BD = DC <=> D là trung điểm của BC hay A là điểm chính giữa cung lớn BC.
☕T.Lam
a: góc AMH+góc ANH=180 độ
=>AMHN nội tiếp
b: Vì góc BMC=góc BNC=90 độ
nên BMNC nội tiếp
=>góc HMN=góc HBC
mà goc MHN=góc BHC
nên ΔHMN đồng dạng vơi ΔHBC
=>HM/HB=MN/BC
=>HM*BC=HB*MN
c: góc NMH=góc HAC
góc KMH=góc NBC
mà góc HAC=góc NBC
nên góc NMH=góc KMH
=>MH là phân giác của góc NMK(1)
góc MKH=góc ABN
góc NKH=góc ACM
góc ABN=góc ACM
Do đó: góc MKH=góc NKH
=>KH là phân giác của góc MKN(2)
Từ (1), (2) suy ra H là tâm đường tròn nội tiếp ΔKMN
a) Xét tứ giác BMNC :
Ta có :\(\widehat{BMC}\)= 90 ( CM là đường cao)
\(\widehat{CNB}\)= 90 ( BN là đường cao)
M,N là hai đỉnh liên tiếp cùng nhìn cạnh BC
=> Tứ giác BMNC là tứ giác nội tiếp
Xét tứ giác AMHN :
Ta có : \(\widehat{HMA}\)= 90 ( CM là đường cao )
\(\widehat{HNA}\)= 90 ( BN là đường cao )
\(\widehat{HMA}+\widehat{HNA}\)=180
=> Tứ giác AMHN là tứ giác nội tiếp
nguyen thi vang_Nhã Doanh_Akai Haruma_Lightning Farron vô giúp đứa này coi....
Nguyễn Thanh Hằng giúp t bài này đi hằng...rồi t có thưởng cho m...nha Phúc =))
điên -_-