K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

nguyen thi vang_Nhã Doanh_Akai Haruma_Lightning Farron vô giúp đứa này coi....

Nguyễn Thanh Hằng giúp t bài này đi hằng...rồi t có thưởng cho m...nha Phúc =))

5 tháng 3 2018

điên -_-

1: Xét tứ giác AMHN có \(\widehat{AMH}+\widehat{ANH}=180^0\)

nên AMHN là tứ giác nội tiếp

2: Ta có: \(\widehat{MNH}=\widehat{BAI}\)

\(\widehat{INH}=\widehat{MCB}\)

mà \(\widehat{BAI}=\widehat{MCB}\)

nên \(\widehat{MNH}=\widehat{INH}\)

hay NH là phân giác của góc MNI

Ta có: \(\widehat{NMH}=\widehat{CAI}\)

\(\widehat{IMH}=\widehat{NCB}\)

mà \(\widehat{CAI}=\widehat{NCB}\)

nên \(\widehat{NMH}=\widehat{IMH}\)

hay MH là tia phân giác của góc NMI

Xét ΔMNI có

MH là phân giác

NH là phân giác

Do đó: H là tâm đường tròn nội tiếp ΔMNI

=>H cách đều NM và MI

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng với ΔACB

b: MF/MB=HF/HB

NE/NC=HE/HC

Xét ΔHFE và ΔHBC có

góc HFE=góc HBC

góc FHE=góc BHC

=>ΔHFE đồng dạng với ΔHBC

=>HF/HB=HE/HC

=>MF/MB=NE/NC

27 tháng 4 2023

a.

Xét tứ giác CDHE có:

\(\widehat{CDH}+\widehat{CEH}=90^o+90^o=180^o\)

Do đó: tứ giác CDHE là tứ giác nội tiếp.

b. Gọi I là trung điểm của HC

=> I là tâm đường tròn ngoại tiếp tam giác DEC

Có: EM là trung tuyến tam giác vuông BEA

=> \(\widehat{MEB}=\widehat{MBE}\)

EI là trung tuyến tam giác vuông HEC

=> \(\widehat{IEH}=\widehat{IHE}\)

Mà: \(\widehat{MBE}=\widehat{ECH}\) (cùng phụ \(\widehat{BAC}\) )

=> \(\widehat{MEI}=\widehat{MEH}+\widehat{IEH}=\widehat{ECH}+\widehat{EHI}=90^o\)

=> ME vuông góc EI hay ME là tiếp tuyến của đường tròn ngoại tiếp tam giác CDE.

c. Xét tam giác vuông BDH và tam giác vuông ADC có:

\(\widehat{BHD}=\widehat{ACD}\) (cùng phụ \(\widehat{HBD}\) )

=> \(\Delta BDH\sim\Delta ADC\)

=> \(\dfrac{BD}{DA}=\dfrac{DH}{DC}\)

<=> \(DH.DA=BD.DC\le\left(\dfrac{BD+DC}{2}\right)^2=\dfrac{BC^2}{4}=\dfrac{3R^2}{4}\)

\(DH.DA\) max \(=\dfrac{3R^2}{4}\)  khi và chỉ khi BD = DC <=> D là trung điểm của BC hay A là điểm chính giữa cung lớn BC.

T.Lam

a: góc AMH+góc ANH=180 độ

=>AMHN nội tiếp

b: Vì góc BMC=góc BNC=90 độ

nên BMNC nội tiếp

=>góc HMN=góc HBC

mà goc MHN=góc BHC

nên ΔHMN đồng dạng vơi ΔHBC

=>HM/HB=MN/BC

=>HM*BC=HB*MN

c: góc NMH=góc HAC

góc KMH=góc NBC

mà góc HAC=góc NBC

nên góc NMH=góc KMH

=>MH là phân giác của góc NMK(1)

góc MKH=góc ABN

góc NKH=góc ACM

góc ABN=góc ACM

Do đó: góc MKH=góc NKH

=>KH là phân giác của góc MKN(2)

Từ (1), (2) suy ra H là tâm đường tròn nội tiếp ΔKMN

6 tháng 4 2017

a) Xét tứ giác BMNC :

Ta có :\(\widehat{BMC}\)= 90 ( CM là đường cao)

          \(\widehat{CNB}\)= 90 ( BN là đường cao)

           M,N là hai đỉnh liên tiếp cùng nhìn cạnh BC

=> Tứ giác BMNC là tứ giác nội tiếp

Xét tứ giác AMHN :

Ta có : \(\widehat{HMA}\)= 90 ( CM là đường cao )

           \(\widehat{HNA}\)= 90 ( BN là đường cao )

            \(\widehat{HMA}+\widehat{HNA}\)=180 

=> Tứ giác AMHN là tứ giác nội tiếp 

          

   

6 tháng 4 2017

Giúp mình câu b với câu c nữa :((