Cho \(\Delta ABC\) cân tại A. Kẻ \(H\perp BC\).
a) Chứng minh: \(\Delta ABH=\Delta ACH\)
b) Kẻ \(M\perp AB\), \(N\perp AC\). Chứng minh \(\Delta AMN\) cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH là cạnh chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
b) Ta có: ΔABH=ΔACH(cmt)
⇒\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{MAH}=\widehat{NAH}\)
Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH là cạnh chung
\(\widehat{MAH}=\widehat{NAH}\)(cmt)
Do đó: ΔAMH=ΔANH(cạnh huyền-góc nhọn)
⇒AM=AN(hai cạnh tương ứng)
c) Ta có: ΔAHB=ΔAHC(cmt)
⇒HB=HC(hai cạnh tương ứng)
Xét ΔBMH và ΔCNH có
HB=HC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy trong ΔABC cân tại A)
Do đó: ΔBMH=ΔCNH(cạnh huyền-góc nhọn)
d) Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(định nghĩa tam giác cân)
⇒\(\widehat{AMN}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên MN//BC(dấu hiệu nhận biết hai đường thẳng song song)
e)
*Tính AB
Ta có: HB=HC(cmt)
mà HB+HC=BC(H nằm giữa B và C)
nên \(BH=CH=\frac{BC}{2}=\frac{12cm}{2}=6cm\)
Áp dụng định lí pytago vào ΔABH vuông tại H, ta được
\(AB^2=BH^2+AH^2\)
hay \(AB^2=6^2+8^2=100\)
⇒\(AB=\sqrt{100}=10cm\)
Vậy: AB=10cm
a: Xét ΔABH vuông tai H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔABC co
AH,CN là trung tuyến
AH cắt CN tại G
=>G là trọng tâm
c: Xét ΔABC có
H là trung điểm của CB
HE//AB
=>E là trung điểm của AC
=>B,G,E thẳng hàng
a) Xét △ABC,ta có :△ABC cân tại A nên
AB=AC, ∠ABC = ∠ACB( t/c tam giác cân)
Vì AH⊥BC nên ∠AHB = ∠AHC
# Xét △AHB vs △AHC, ta có :
∠AHB=∠AHC(=90o)
AB=AC
∠ABC = ∠ACB
⇒△AHB = △AHC(ch-gn)
⇒HB=HC( 2 cạnh tương ứng )
b)Vì △AHB = △AHC(cmt) nên ∠HAB = ∠HAC(2 góc tương ứng)
Vì HM ⊥ AB nên ∠HMA =90o
Vì HN ⊥ AC nên ∠HMB =90o
#Xét △AHM vs △AHN, ta có:
∠AHM =∠AHN(=90o)
AH là cạnh chung
∠MAH=∠NAH(cmt)
⇒△AHM = △AHN (ch-gn)
c) Lúc nữa.
c)Xét △AHB vuông tại H, ta có :
AH2+HB2=AB2
Thay AH=8,AB=10;ta có
82+HB2=102
HB2=100-64=36=62
⇒HB=6cm
AB=AC(cmt)⇒AC=10cm
Xét △AHC vuông tại H,ta có:
AH2+HC2=AC2
Thay AH=8cm, AC=10;ta có
82+ HC2=102
⇒HC2=100-64=36=62
⇒HC=6cm
Vì H ∈ BC nên HB + HC =BC
⇒BC=6+6=12cm
vậy diện tích tam giác ABC là
8*12/2=48cm2
Xét △AMD và △DMC
AB=AC(giả thuyết)
Cạnh AM là cạnh chung
BM= CM ( M là trung điểm của cạnh BC)
=> △AMD=△DMC
Sorry bạn nhé mk chỉ bt làm câu a thui ☹
b) Vì ΔAHC = ΔAHB ( câu a )
=> BH = HC ( Hai cạnh tương ứng )
Xét ΔBHN và ΔCHM, ta có:
BH = HC ( cmt )
Góc BHN = Góc CHM ( Hai góc đối đỉnh )
HN = HM ( gt )
=> ΔBHN = ΔCHM ( c-g-c )
=> Góc HMC = Góc BNH ( Hai góc tương ứng )
Mà góc HMC và góc BNH là hai góc so le trong
=> BN // AC
c)
a) xét 2 tam giác vuông AIB và AIC có:
AI cạnh chung
AB=AC(gt)
=> tam giác AIB=tam giác AIC(cạnh huyền-cạnh góc vuông)
=> IB=IC=> I là trung điểm của BC
b) xét 2 tam giác vuông MIB và NIC có:
IB=IC(theo câu a)
\(\widehat{B}\)=\(\widehat{C}\)(gt)
=> tam giác MIB =tam giác NIC(CH-GN)
=> MB=NC mà AB=AC=> AM=AN
=> tam giác AMN cân tại A
c)
Xét tam giác ABH và tam giác ACH có
Góc ABH = ACH (gt)
Có góc AHB = AHC = 90
AB = AC (gt)
=> Tam giác ABH= ACH ( cạnh huyền - góc nhọn )