Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
â)Ta có : AB = AC =10 cm (gt)
=> tam giác ABC cân tại A (2 cạnh bên = nhau )
b) Xét tam giác AHB va tam giac AHC ,co :
\(\widehat{AHB}=\widehat{AHC}=90^O\) ( AH là đường cao )
AB =AC =10 cm (gt )
AH là cạnh chung
Do đo : tam giác AHB =tam giác AHC ( cạnh huyền - cạnh góc vuông )
=>\(\widehat{BAH}=\widehat{CAH}\)( hai góc tương ứng )
=>AH là tia phân giác của góc A
c)Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác
Nên :H là trung điểm của BC
=>BH = CH = \(\frac{BC}{2}\)=12/2 = 6 cm
TRẢ LỜI TIẾP CÂU Ở TRÊN NHA ( HỒI NÃY BẤM NHẦM GỬI TRẢ LỜI )
b) Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác
Nên : H là trung điểm của BC
=> BH =CH =\(\frac{BC}{2}=\frac{12}{2}=6cm\)
Xét : tam giác BMH và tam giác HCN , co :
BH = CH = 6cm ( chứng minh trên )
\(\widehat{M}=\widehat{N}=90^o\left(gt\right)\)
\(\widehat{B}=\widehat{C}\) (Vì tam giác ABC cân tại A nên hai góc ở đáy = nhau )
Do do:tm giác BHM = tam giác HCN
đ) Áp dụng định lý pytago vào tam giác AHC vuông tại H
\(AH^2=AC^2-HC^2\) =\(10^2-6^2\)=\(100-36=64\)
=>\(AH=\sqrt{64}=8cm\) OK CHÚC BẠN HỌC TỐT
1.a)
Vì AB=AC => Tam giác ABC cân
b)
Vì △ABC cân
=> góc ABC=góc ACB (1)
góc AHC=góc AHB=90 độ (2)
AB=AC (gt) (3)
Từ (1)(2)(3) => △AHB = △AHC (cạnh huyền-góc nhọn)
=> góc BAH = góc CAH
=> AH là tia phân giác của góc A
c) Vì góc ABC = góc ACB
=> góc MBH = góc NCH
góc BMH = góc HNC =90 độ
=> △BHM = △HCN (g.g)
d) Ta có: AH.BC=AB.AC
=> AH.12=10.10
=> AH = 25/3 (cm)
Bạn ơi, mình sắp xếp các cạnh và các góc đúng, không sai đâu nên đừng viết ngược lại nhá
a, Ta có : BH = HC = BC : 2
=> BH = HC = 8 : 2
=> BH = HC = 4 ( cm )
=> BH = HC
b, - Xét tam giác AHB vuông tại H có :
AC2 = AH2 + HC2
=> 52 = AH2 + 42
=> 25 = AH2 + 16
=> AH2 = 25 + 16
=> AH2 = 41
=> AH = 20,5 ( cm )
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đo: ΔAHB=ΔAHC
Suy ra: HB=HC
b: Xét ΔAHM vuông tại M và ΔAHN vuông tại N có
AH chung
\(\widehat{HAM}=\widehat{HAN}\)
Do đó: ΔAHM=ΔAHN
Suy ra: AM=AN và HM=HN
=>AH là đường trung trực của MN
c: BC=12cm nên BH=CH=6cm
=>AH=8(cm)
a,
+) Cách 1:
Xét △ABC cân tại A (AB = AC) có: AH là phân giác BAC
=> AH là đường trung trực => ∠AHB = 90o và H là trung điểm BC => HB = HC
+) Cách 2:
Xét △BAH và △CAH
Có: AB = AC (gt)
∠BAH = ∠CAH (gt)
AH là cạnh chung
=> △BAH = △CAH (c.g.c)
=> BH = CH (2 cạnh tương ứng)
P/s: chọn 1 trong 2 cách xong làm tiếp
Ta có: HB = HC = BC : 2 = 8 : 2 = 4 (cm)
Xét △ABH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> AH2 = AB2 - BH2 = 52 - 42 = 9
=> AH = 3 (cm)
b,
+) Cách 1:
Xét △MAH vuông tại M và △NAH vuông tại N
Có: AH là cạnh chung
∠MAH = ∠NAH (gt)
=> △MAH = △NAH (cg-gn)
=> AM = AN (2 cạnh tương ứng) => A thuộc đường trung trực của MN
và MH = NH (2 cạnh tương ứng) => H thuộc đường trung trực của MN
=> AH là đường trung trực của MN
+) Cách 2: Gọi AH ∩ MN = { I }
Xét △MAH vuông tại M và △NAH vuông tại N
Có: AH là cạnh chung
∠MAH = ∠NAH (gt)
=> △MAH = △NAH (cg-gn)
=> AM = AN (2 cạnh tương ứng)
Xét △MAI và △NAI
Có: AM = AN (cmt)
∠MAI = ∠NAI (gt)
AI là cạnh chung
=> △MAI = △NAI (c.g.c)
=> MI = NI (2 cạnh tương ứng) => I là trung điểm MN
và ∠MIA = ∠NIA (2 góc tương ứng)
Mà ∠MIA + ∠NIA = 180o (2 góc kề bù)
=> ∠MIA = ∠NIA = 180o : 2 = 90o
=> AI ⊥ MN
Mà I là trung điểm MN
=> AI là đường trung trực MN
=> AH là đường trung trực MN ( AH ∩ MN = { I } )
P/s: chọn 1 trong 2 cách xong làm tiếp
Vì AM = AN (cmt) => △AMN cân tại A => ∠AMN = (180o - ∠MAN) : 2
Vì △ABC cân tại A => ∠ABC = (180o - ∠BAC) : 2
=> ∠AMN = ∠ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> MN // BC (dhnb)
c, Xét △MAH vuông tại M có: AH > AM (quan hệ giữa đường xiên và đường vuông góc)
Xét △MBH vuông tại M có: BH > MB (quan hệ giữa hình chiếu và đường xiên)
Ta có: 2AH + BC = 2AH + 2BH (BH = BC : 2 => 2BH = BC)
=> 2AH + 2BH > 2AM + 2MB
=> 2AH + BC > 2(AM + MB) = 2AB
a: Xét ΔABC cân tại A có AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
A B C M N H a) Xét △ABC,ta có :△ABC cân tại A nên
AB=AC, ∠ABC = ∠ACB( t/c tam giác cân)
Vì AH⊥BC nên ∠AHB = ∠AHC
# Xét △AHB vs △AHC, ta có :
∠AHB=∠AHC(=90o)
AB=AC
∠ABC = ∠ACB
⇒△AHB = △AHC(ch-gn)
⇒HB=HC( 2 cạnh tương ứng )
b)Vì △AHB = △AHC(cmt) nên ∠HAB = ∠HAC(2 góc tương ứng)
Vì HM ⊥ AB nên ∠HMA =90o
Vì HN ⊥ AC nên ∠HMB =90o
#Xét △AHM vs △AHN, ta có:
∠AHM =∠AHN(=90o)
AH là cạnh chung
∠MAH=∠NAH(cmt)
⇒△AHM = △AHN (ch-gn)
c) Lúc nữa.
c)Xét △AHB vuông tại H, ta có :
AH2+HB2=AB2
Thay AH=8,AB=10;ta có
82+HB2=102
HB2=100-64=36=62
⇒HB=6cm
AB=AC(cmt)⇒AC=10cm
Xét △AHC vuông tại H,ta có:
AH2+HC2=AC2
Thay AH=8cm, AC=10;ta có
82+ HC2=102
⇒HC2=100-64=36=62
⇒HC=6cm
Vì H ∈ BC nên HB + HC =BC
⇒BC=6+6=12cm
vậy diện tích tam giác ABC là
8*12/2=48cm2