Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: AC=5cm
d: Xét ΔKBH vuông tại K và ΔMCH vuông tại M có
BH=CH
\(\widehat{B}=\widehat{C}\)
Do đó: ΔKBH=ΔMCH
Suy ra: KB=MC
a: Xét ΔAHC vuông tại H và ΔAHB vuông tại H có
AB=AC
AH chung
Do đó: ΔAHC=ΔAHB
Suy ra: \(\widehat{AHC}=\widehat{AHB}\)
b: Xét tứ giác BNCM có
H là trung điểm của BC
H là trung điểm của NM
Do đó: BNCM là hình bình hành
Suy ra: BN//CM
hay BN//AC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN và MH=MN
=>AH là trung trực của MN
a/ xét tam giác ABC cân tại A ta có
AH là đường phân giác(gt)
=> AH là đường trung tuyến; AH là đường cao
=>H là trung điểm của BC và AH vuông góc với BC
\(\)
b/ ta có: H là trung điểm của BC
\(\Rightarrow BH=\frac{1}{2}BC\)
\(\Rightarrow BH=6cm\)
xét tam giác ABH vuông tại H ta có
\(AB^2=BH^2+AH^2\)
\(\Rightarrow AH^2=AB^2-BH^2\)
\(\Rightarrow AH^2=64\)
\(\Rightarrow AH=8cm\)
ta có
\(S_{ABC}=\frac{AH.BC}{2}\)
\(S_{ABC}=48cm^2\)
c/ xét tam giác MBH vuông tại M và tam giác NCH vuông tại N ta có
BH=HC(H là trung điểm của BC)
góc MBH=góc NCH (tam giác ABC vuông tại A)
=> tam giác MBH=tam giác NCH (ch-gn)
=> MH=NH (2 cạnh tuong ứng)
cmtt tam giác BGH=tam giác CNH (ch-gn)
=> QH=NH(2 cạnh tương ứng)
mà MH=NH(cmt)
nên QH=MH
=> tam giác GHM cân tại H
\(\)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
DO đó; ΔAMH=ΔANH
Suy ra: AM=AN và HM=HN
=>AH là đường trung trực của MN
hay AH\(\perp\)MN
c, Xét ▲AMK và ▲ANK có:
Góc K1 = K2 ( Ah vuông với Mn)
Ak chung
A1=A2 (cmt)
Sra ▲AMK = ▲ANK ( cgv-gn)
Do đó MK = NK ( 2 cạnh tương ứng)
Xét ▲NMP có:
NH là trung tuyến (do HM=HP)
PK là trung tuyến ( do MK = NK) cmt (1)
Suy ra Q là trọng tâm △NMP (2)
Từ (1) và (2) suy ra P,Q,K thẳng hàng