K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

Xét tam giác $ADC$ có $B,P,M$ thẳng hàng và thuộc các cạnh của tam giác $ADC$ nên áp dụng định lý Menelaus:

$\frac{AM}{CM}.\frac{PC}{PD}.\frac{BD}{BA}=1$

$\Leftrightarrow \frac{PC}{PD}=\frac{AB}{BD}=\frac{BD+AD}{BD}$

$=1+\frac{AD}{BD}$

Mà $\frac{AD}{BD}=\frac{AC}{BC}$ theo tính chất đường phân giác

Do đó: $\frac{PC}{PD}=1+\frac{AC}{BC}$

$\Rightarrow \frac{PC}{PD}-\frac{AC}{BC}=1$

 Ta có đpcm.

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Hình vẽ:undefined

PC/PD-AC/BC

=MC/ME-AD/DB

=MA/ME-AD/DB

\(=\dfrac{ME+EA}{ME}-\dfrac{AE}{EM}\)

=1

a) Xét tứ giác ABCE có 

M là trung điểm của đường chéo AC(gt)

M là trung điểm của đường chéo BE(B và E đối xứng nhau qua M)

Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

10 tháng 2 2017

P ở đâu ra vậy bạn? bạn viết đúng đề đi. có thể mình giúp bạn được

22 tháng 3 2021

a) \(BM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)

Tam giác ABM có MD là p/giác

\(\Rightarrow\dfrac{AD}{BD}=\dfrac{AM}{BM}=\dfrac{6}{5}\)

b) Tam giác AMC có ME là p/giác

\(\Rightarrow\dfrac{MC}{AM}=\dfrac{EC}{AE}\)

Mà: MC = BM (GT)

\(\Rightarrow\dfrac{BM}{AM}=\dfrac{EC}{AE}\)

c) Có: \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\left(cmt\right)\) (1)

Tam giác AMC có ME là p/giác

\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{MC}\)

Mà: BM = MC (GT)

\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{BM}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\)

=> DE // BC

a) Ta có: M là trung điểm của BC(gt)

nên \(MB=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Xét ΔAMB có MD là đường phân giác ứng với cạnh AB(Gt)

nên \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{BD}=\dfrac{6}{5}\)

Gọi O à 1 điểm nằm trên đường trung trực của BC (O thuộc BC)

Xét \(\Delta ABM\)và \(\Delta OBM\)

\(\widehat{ABM}=\widehat{MBO}\)(gt)

BM chung

\(\widehat{A}=\widehat{BOM}\)(=90o)

=> \(\Delta ABM\)=\(\Delta OBM\)(ch-gn)

=> \(\widehat{AMB}=\widehat{BMO}\)(cặp góc tương ứng)

Xét\(\Delta MBO\)\(\Delta MCO\) có

MO chung

\(\widehat{MOB}=\widehat{MOC}\)(=900)

BO=OC 

=> \(\Delta MBO\)=\(\Delta MCO\)(2cgv)

=>\(\widehat{BMO}=\widehat{CMO}\)(cgtư)

.=> \(\widehat{AMB}=\widehat{BMO}\)=\(\widehat{CMO}\) 

mà \(\widehat{AMB}+\widehat{BMO}+\widehat{CMO}=180^o\)

=>\(\widehat{AMB}=\widehat{BMO}=\widehat{CMO}=60^0\)

=> \(\widehat{ACB}=90^{o^{ }}-60^0=30^0\)