Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tam giác $ADC$ có $B,P,M$ thẳng hàng và thuộc các cạnh của tam giác $ADC$ nên áp dụng định lý Menelaus:
$\frac{AM}{CM}.\frac{PC}{PD}.\frac{BD}{BA}=1$
$\Leftrightarrow \frac{PC}{PD}=\frac{AB}{BD}=\frac{BD+AD}{BD}$
$=1+\frac{AD}{BD}$
Mà $\frac{AD}{BD}=\frac{AC}{BC}$ theo tính chất đường phân giác
Do đó: $\frac{PC}{PD}=1+\frac{AC}{BC}$
$\Rightarrow \frac{PC}{PD}-\frac{AC}{BC}=1$
Ta có đpcm.
PC/PD-AC/BC
=MC/ME-AD/DB
=MA/ME-AD/DB
\(=\dfrac{ME+EA}{ME}-\dfrac{AE}{EM}\)
=1
a) Xét tứ giác ABCE có
M là trung điểm của đường chéo AC(gt)
M là trung điểm của đường chéo BE(B và E đối xứng nhau qua M)
Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
P ở đâu ra vậy bạn? bạn viết đúng đề đi. có thể mình giúp bạn được
a) \(BM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)
Tam giác ABM có MD là p/giác
\(\Rightarrow\dfrac{AD}{BD}=\dfrac{AM}{BM}=\dfrac{6}{5}\)
b) Tam giác AMC có ME là p/giác
\(\Rightarrow\dfrac{MC}{AM}=\dfrac{EC}{AE}\)
Mà: MC = BM (GT)
\(\Rightarrow\dfrac{BM}{AM}=\dfrac{EC}{AE}\)
c) Có: \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\left(cmt\right)\) (1)
Tam giác AMC có ME là p/giác
\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{MC}\)
Mà: BM = MC (GT)
\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{BM}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\)
=> DE // BC
a) Ta có: M là trung điểm của BC(gt)
nên \(MB=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Xét ΔAMB có MD là đường phân giác ứng với cạnh AB(Gt)
nên \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{BD}=\dfrac{6}{5}\)
Lightning FarronLuân Đào giúp mk vs
Nguyễn Việt LâmAikatstuThierry HenryNguyễn Thanh Hằng