CMR: \(a^2+4b^2+4c^2\ge4ab-4ac+8bc\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) 4x4+81=4x2+36x2+81-36x2
=(2x2+9)2-36x2
=(2x2+9-6x)(2x2+9+6x)
b)
(x2+x+1)(x2+x+2)-12
=(x2+x+1)(x2+x+1+1)-12
=(x2+x+1)2+(x2+x+1)-12
=(x2+x+1)2-3(x2+x+1)+4.(x2+x+1)-12
=(x2+x+1).(x2+x+1-3)+4.(x2+x+1-3)
=(x2+x+1)(x2+x-2)+4.(x2+x-2)
=(x2+x-2)(x2+x+1+4)
=(x2+x-2)(x2+x+5)
a) 4x^4 + 81
= 4x^4 + 2.2x^2 .9 + 81 - 36x^2
= ( 2x^2 + 9 )^2 - 36x^2
= (2x^2 - 6x + 9 )(2x^2 + 6x + 9 )
b) Đặt x^2 + x + 1 = a thay vào ta có
a ( a+ 1 ) - 12 = a^2 + a - 12
= a^2 + 4a - 3a - 12
= a ( a+ 4 ) - 3 ( a+ 4 )
= ( a- 3 )( a+ 4 )
Thay a = x^2 + x + 1 ta có :
( x^2 + x + 1 - 3 )(x^2 + x + 1 + 4 ) = (x^2 +x - 2 )(x ^2 + x + 5 )
Còn phân tích đc tiếp phân tích hộ mình nha
1)Ta có : \(A=\frac{3}{2x-x^2-4}\Leftrightarrow A=\frac{3}{-\left(x^2-2x+1\right)-3}\)\(\Leftrightarrow A=\frac{3}{-\left(x-1\right)^2-3}\)
Vì \(-\left(x-1\right)^2\le0\)nên \(-\left(x-1\right)^2-3\le-3\)
\(\Leftrightarrow A=\frac{3}{-\left(x-1\right)^2-3}\ge\frac{3}{-3}=-1\)
Vậy \(GTLN\left(A\right)=-1\) khi \(x=1\)
2)Ta có : \(a^2+4b^2+4c^2+4ac=\left(a^2+4c^2+4ac\right)+4b^2\)
\(=\left(a+2c\right)^2+\left(2b\right)^2\) \(\left(1\right)\)
Vì \(\left(a-b\right)^2\ge0\)nên\(a^2+b^2-2ab\ge0\Leftrightarrow a^2+b^2\ge2ab\)dấu "=" xảy ra khi \(a=b\)
Áp dụng BĐT vào (1) ta có \(\left(a+2c\right)^2+\left(2b\right)^2\ge2.\left(2b\right).\left(a+2c\right)=4b\left(a+2c\right)\)
\(\Leftrightarrow a^2+4b^2+4c^2+4ac\ge4ab+8bc\)
Nhầm , sorry bạn nha , mk làm lại nè
a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc
⇔ a2 - 4ab + 4b2 + 4ac - 8bc + 4c2 ≥ 0
⇔ ( a - 2b)2 + 4c( a - 2b) + 4c2 ≥ 0
⇔ ( a - 2b + 2c)2 ≥ 0 ( luôn đúng ∀abc)
\(a^2+4b^2+4c^2\ge4ab-4ac+8bc\\ \Leftrightarrow a^2+4b^2+4c^2-4ab+4ac-8bc\ge0\\ \Leftrightarrow\left(a-2b+2c\right)^2\ge0\)
Luôn đúng với \(\forall x\in R\)
Bài 1 :
a) \(x^2+y^2\)
\(\Leftrightarrow x^2+2xy+y^2-2xy\)
\(\Leftrightarrow\left(x+y\right)^2-2xy=\left(-3\right)^2-2.\left(-28\right)=65\)
b) \(x^3+y^3\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\)
\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=\left(-3\right)\left[\left(-3\right)^2-3.\left(-28\right)\right]=-279\)
c) \(x^4+y^4\)
\(\Leftrightarrow\left(x+y\right)^4-4x^3y-4xy^3-6x^2y^2=\left(-3\right)^4-4\left(-28\right).65-6\left(-28\right)^2=2657\)
a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc
⇔ a2 + 4b2 + 4c2 - 4ab + 4ac - 8bc ≥ 0
⇔ (a - 2b + 2c)2 ≥ 0 (đúng ∀abc)
Vậy a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc