Chứng minh :
(n+1)(n+2)(n+3)·....·2n ⋮ 2n
(n∈ℕ∗)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh:\(C_n=7.2^{2n-2}+3^{2n-1}⋮5\)(1)
Chứng minh quy nạp theo n
+) Với n=1
Ta có: \(C_0=7.2^0+3^1=10⋮5\)
=> (1) đúng
+) G/s (1) đúng với n
nghĩa là: \(C_n=7.2^{2n-2}+3^{2n-1}⋮5\)
Ta chứng minh (1) đúng với n+1
\(C_{n+1}=7.2^{2\left(n+1\right)-2}+3^{2\left(n+1\right)-1}=7.2^{2n-2}.4+3^{2n-1}.9\)
\(=5.7.2^{2n-2}-7.2^{2n-2}+10.3^{2n-1}-3^{2n-1}\)
\(=5.7.2^{2n-2}+10.3^{2n-1}-\left(7.2^{2n-2}+3^{2n-1}\right)⋮5\)
=> (1) đúng
Vậy (1) đúng với mọi n thuộc N*
Đáp án A
Ta có: ( − 1 ) 2 n + 1 = − 1 , ∀ n ∈ ℕ * nên A = {-1}
Vậy A chỉ có 1 phần tử
a) \(2+4+6+...+2n=n\left(n+1\right)\) (1)
\(n=1\) ta có : \(2=1\cdot\left(1+1\right)\) ( đúng)
Giả sử (1) đúng đến n, ta sẽ chứng minh (1) đúng với n+1
Có \(2+4+6+...+2n+2\left(n+1\right)\)
\(=n\left(n+1\right)+2\left(n+1\right)=\left(n+1\right)\left(n+2\right)\)
=> (1) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
b) sai đề nha, mình search google thì được như này =))
\(1^3+3^3+5^3+...+\left(2n-1\right)^2=n^2\left(2n^2-1\right)\) (2)
\(n=1\) ta có : \(1^3=1^2\cdot\left(2-1\right)\) (đúng)
giả sử (2) đúng đến n, tức là \(1^3+3^3+...+\left(2n-1\right)^3=n^2\left(2n^2-1\right)\)
Ta c/m (2) đúng với n+1
Có \(1^3+3^3+...+\left(2n+1\right)^3=n^2\left(2n^2-1\right)+\left(2n+1\right)^3\)
\(=2n^4+8n^3+11n^2+6n+1\)
\(=\left(n^2+2n+1\right)\left(2n^2+4n+1\right)\)
\(=\left(n+1\right)^2\left[2\left(n+1\right)^2-1\right]\) => (2) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
Bài 1:
$A=(n-1)(2n-3)-2n(n-3)-4n$
$=2n^2-5n+3-(2n^2-6n)-4n$
$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$
Ta có đpcm.
Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$
$=(2n-3)(n+2+n)+n(n+10)$
$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$
$=5n^2+8n-6=5n(n+3)-7(n+3)+15$
$=(n+3)(5n-7)+15$
Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$
$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$
$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$
Ta có: 1.3.5...(2n - 1)
= { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n)
= (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ]
= {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ]
= [ (n + 1)(n + 2)...2n ]/(2.2.2...2)
=> 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2)
Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương
=> [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương
=> [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2)
Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2)
Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2)
=> [ (n + 1)(n + 2)...2n ] chia hết cho 2^n
Gọi d là (2n+3,3n+5)
Xét hiệu
2 (3n+5)-3(2n+3) chia hết cho d
(6n+10)-(6n+9) chia hết cho d
6n+10-6n-9 chia hết cho d
1 chia hết cho d
d=1
vậy (2n+3,3n+5)=1
k mk nha
\(A=2n^2\left(n+1\right)-2n\left(n^2+n+3\right)\)
\(A=2n\left[n\left(n+1\right)-\left(n^2+n+3\right)\right]\)
\(A=2n\left(n^2+n-n^2-n-3\right)\)
\(A=2n\cdot\left(-3\right)\)
\(A=-6n⋮6\)(đpcm)
125 . ( − 61 ) . ( − 2 ) 3 . ( − 1 ) 2 n = 125 . ( − 62 ) . ( − 8 ) . 1 = 125 . ( − 8 ) . ( − 62 ) = − 1000 . ( − 62 ) = 62000
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)