Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta có: 1.3.5...(2n - 1)
- = { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n)
- = (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ]
- = {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ]
- = [ (n + 1)(n + 2)...2n ]/(2.2.2...2)
- => 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2)
- Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương
- => [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương
- => [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2)
- Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2)
- Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2)
- => [ (n + 1)(n + 2)...2n ] chia hết cho 2^n
Ta có: 1.3.5...(2n - 1)
= { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n)
= (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ]
= {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ]
= [ (n + 1)(n + 2)...2n ]/(2.2.2...2)
=> 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2)
Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương
=> [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương
=> [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2)
Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2)
Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2)
=> [ (n + 1)(n + 2)...2n ] chia hết cho 2^n
Gọi d là (2n+3,3n+5)
Xét hiệu
2 (3n+5)-3(2n+3) chia hết cho d
(6n+10)-(6n+9) chia hết cho d
6n+10-6n-9 chia hết cho d
1 chia hết cho d
d=1
vậy (2n+3,3n+5)=1
k mk nha
125 . ( − 61 ) . ( − 2 ) 3 . ( − 1 ) 2 n = 125 . ( − 62 ) . ( − 8 ) . 1 = 125 . ( − 8 ) . ( − 62 ) = − 1000 . ( − 62 ) = 62000
\(1) VP= \frac{1}{n}-\frac{1}{n+1}\)\(= \frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}\)\(= \frac{n+1-n}{n(n+1)}\)\(= \frac{1}{n(n+1)}\)\(= VT\)
2) \(VP= \frac{1}{n+1}-\frac{1}{(n+1)(n+2)}= \frac{(n+2)}{n(n+1)(n+2)}-\frac{n}{n(n+1)(n+2)}\)\(= \frac{n+2-n}{n(n+1)(n+2)}= \frac{2}{n(n+1)(n+2)}=VT\)
3) \(VP= \frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}=\frac{n+3}{n(n+1)(n+2)(n+3)}-\frac{n}{n(n+1)(n+2)(n+3)}\)\(= \frac{n+3-n}{n(n+1)(n+2)(n+3)}=\frac{3}{n(n+1)(n+2)(n+3)(n+4)}=VT\)
Những ý sau làm tương tự, thế mà chẳng thèm mở mồm ra hỏi bạn :))
Bài 3:
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
b: =>-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
Lời giải:
\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)
\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)
\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)
Ta có đpcm.