K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

vai con na

29 tháng 3 2018

mk lm cách khác, bn tham khảo nhé

     \(P\left(x\right)=\left(x+5\right)\left(x+10\right)\left(x+15\right)\left(x+20\right)+2016\)

\(=\left(x^2+25x+100\right)\left(x^2+25x+150\right)+2016\)

Đặt   \(x^2+25x+125=a\)  ta có:

         \(P\left(x\right)=\left(a-25\right)\left(a+25\right)+2016\)

                     \(=a^2-625+2016\)

                     \(=a^2-25+1416\)

                     \(=\left(a-5\right)\left(a+5\right)+1416\)

Thay trở lại ta được:   \(P\left(x\right)=\left(x^2+25x+120\right)\left(x^2+25x+130\right)+1416\)

Ta thấy      \(\left(x^2+25x+120\right)\left(x^2+25x+130\right)\) \(⋮\) \(x^2+25x+120\)

suy ra         \(P\left(x\right)\) chia  cho     \(x^2+25x+120\) dư   \(1416\)

Ta có : P(x) = (x + 5)(x + 20)(x +15)(x + 10)

=> P(x) = (x2 + 25x + 100)(x2 + 25x + 150)

=> P(x) = (x2 + 25x + 120)(x2 + 25x + 150) - 20(x2 + 25x + 150)

=> P(x) = (x2 + 25x + 120)(x2 + 25x + 150) - 20(x2 + 25x + 120) - 20.30 

=> P(x) = (x2 + 25x + 120)(x2 + 25x + 150 - 20) - 600

Vì   (x2 + 25x + 120)(x2 + 25x + 150 - 20)  chia hết cho (x2 + 25x + 120) 

Nên : Số dư là : 600

9 tháng 12 2018

\(x^4+2018x^2+2017x+2018\)

\(=\left(x^4-x\right)+\left(2018x^2+2018x+2018\right)\)

\(=x.\left(x^3-1\right)+2018.\left(x^2+x+1\right)\)

\(=x.\left(x-1\right)\left(x^2+x+1\right)+2018.\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2018\right)\)

9 tháng 12 2018

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{7}=\frac{c}{5}=\frac{d}{6}=\frac{c-d}{-1}\)

\(\frac{a+b}{7}=\frac{c-d}{-1}\Rightarrow\frac{a+b}{c-d}=-7\)

21 tháng 11 2019

ko biết đâu bài khó lắm

22 tháng 11 2019

mất dạy nhá mai dun

19 tháng 10 2017

1.Gọi số tự nhiên cần tìm là A

Chia cho số 29 dư 5 nghĩa là: A = 29p + 5 (p thuộc N)

Tương tự: Chia cho số 31 dư 28 nghĩa là: 31q + 28 (q thuộc N)

Nên 29p + 5 = 31q + 28 => 29 (p - q) = 2q + 23

Ta thấy : 2q + 23 là số lẻ => 29 (p - q) cũng là số lẻ => p - q = 1

Theo giả thiết A nhỏ nhất nên => q nhỏ nhất (A = 31q + 28)

                                                   => 2q = 29(p - q) - 23 nhỏ nhất

                                                   => p- q nhỏ nhất

Do đó p - q = 1 => 2q = 29 -23 = 6

                            => q = 3

Vậy số cần tìm A là : 31q + 28 = 31 x 3 + 28 = 121

2. Số đó phải lớn hơn 10. Ta có:

129 : x = b =>x.b + 10 = 129 (b là thương) => x = (129 - 10) : b = 129 : b

61 : x = c dư 10 => x.c + 10 = 61 (c là thương) => x = 51 : c

x = 119 : b = 51 : c

119 chỉ chia hết cho 7 và 17 (ngoài 1 và 119) : 119 : 17 = 7

51 chỉ chia hết cho 3 và 17 (ngoài 1 và 51) : 51 : 3 = 17

Mà số đó lớn hơn 10 nên x = 17

Vậy x = 17