Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
b)126: a dư 25=>a khác 0 ; 1;126
=>126-25=101 chia hết cho a
Mà 101=1.101
=>a=1(L) hoặc a=101(TM)
Vậy a=101
gọi số cần tìm là A :
chia cho 29 dư 5
A = 29 x p + 5 ( p \(\in\)N )
A = 31 x q + 28 ( q \(\in\)N )
nên :
29 x p + 5 = 31 x q + 28
=> 29 x ( p - q ) = 2 x q + 23
ta có :
2 x q + 23 là số lẻ
=> 29 x ( p - q ) là số lẻ
vậy p - q = 1
theo giả thiết phải tìm A nhỏ nhất :
=> 2q = 29 x ( p - q ) - 23 nhỏ nhất
=> q nhỏ nhất ( A = 31 x q + 28 )
=> p - q nhor nhất
suy ra : 2 x q = 29 x 1 - 23 = 6
=> q = 6 : 2 = 3
vậy số cần tìm là : A = 31 x q + 28 =31 x 3 + 28 = 131
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 (p ∈∈ N)
Tương tự: A = 31q + 28 (q ∈∈ N)
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p - q) cũng là số lẻ => p - q ≥≥ 1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=> 2q = 29(p - q) - 23 nhỏ nhất
=> p - q nhỏ nhất
Do đó p - q = 1 => 2q = 29 - 23 = 6
=> q = 3
Gọi số tự nhiên cần tìm là \(A\)
Chia cho 29 dư 5 nghĩa là: \(A=29p+5\left(p\in N\right)\)
Tương tự: \(A=31q+28\left(q\in N\right)\)
Nên: \(29p+5=31q+28\) \(\Rightarrow\) \(29-\left(p-q\right)=2q+23\)
Ta thấy: \(2q+23\) là số lẻ \(\Rightarrow\) \(29\left(p-q\right)\) cũng là số lẻ \(\Rightarrow\)\(p-q\ge1\)
Theo giả thiết A nhỏ nhất
\(\Rightarrow\) q nhỏ nhất \(\left(A=31q+28\right)\)
\(\Rightarrow\)\(2q=29\left(p-q\right)-23\) nhỏ nhất
\(\Rightarrow\) \(p-q\) nhỏ nhất
Do đó:
\(p-q=1\) \(\Rightarrow\) \(2q=29-23=6\)
\(\Rightarrow\) \(q=3\)
Vậy số cần tìm là: \(A=31q+28=31.3+28=121\)
biết rắng khi chia số này cho 29 dư 5, còn khi chia cho 31 thì dư 28
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là : 29p + 5 ( p thuộc N )
Tương tự A = 31q + 28 ( q thuộc N )
Nê 29p + 5 = 31q + 28 => 29.( p - q ) = 2q + 23
Ta thaayd : 2q + 23 là số lẻ => 29. ( p - q ) cũng là số lẻ => p - q >=1
theo giả thiết A nhỏ nhất => q nhỏ nhất ( A = 31q + 28 )
=> 2q = 29.( p - q ) -23 nhỏ nhất
=> p - q nhỏ nhất
do đó p - q =1 => 2q = 29 - 23 = 6
=> q = 3
A = 31q + 28 = 31.3 + 28 = 121
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Chú ý : dấu (.) là nhân nhé
1.Gọi số tự nhiên cần tìm là A
Chia cho số 29 dư 5 nghĩa là: A = 29p + 5 (p thuộc N)
Tương tự: Chia cho số 31 dư 28 nghĩa là: 31q + 28 (q thuộc N)
Nên 29p + 5 = 31q + 28 => 29 (p - q) = 2q + 23
Ta thấy : 2q + 23 là số lẻ => 29 (p - q) cũng là số lẻ => p - q = 1
Theo giả thiết A nhỏ nhất nên => q nhỏ nhất (A = 31q + 28)
=> 2q = 29(p - q) - 23 nhỏ nhất
=> p- q nhỏ nhất
Do đó p - q = 1 => 2q = 29 -23 = 6
=> q = 3
Vậy số cần tìm A là : 31q + 28 = 31 x 3 + 28 = 121
2. Số đó phải lớn hơn 10. Ta có:
129 : x = b =>x.b + 10 = 129 (b là thương) => x = (129 - 10) : b = 129 : b
61 : x = c dư 10 => x.c + 10 = 61 (c là thương) => x = 51 : c
x = 119 : b = 51 : c
119 chỉ chia hết cho 7 và 17 (ngoài 1 và 119) : 119 : 17 = 7
51 chỉ chia hết cho 3 và 17 (ngoài 1 và 51) : 51 : 3 = 17
Mà số đó lớn hơn 10 nên x = 17
Vậy x = 17