Bài 1 : tìm các giá trị của m , â, b để các cặp PT sau đây tương đương :
a.\(mx^2-\left(m+1\right)x+1=0\) và \(\left(x-1\right)\left(2x-1\right)\)
b. \(\left(x-3\right)\left(ax+2\right)=0\) va \(\left(2x+b\right)\left(x+1\right)=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(hình\) \(như\) \(sai\) \(bn\) \(ạ\) \(vì:m=-2\Rightarrow\left\{{}\begin{matrix}\left(1\right):x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x1=1\\x2=-2\end{matrix}\right.\\\left(2\right)x^2-2x+1=0\Rightarrow\left[{}\begin{matrix}x1=1\\x2=1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow S1\ne S2\Rightarrow\left(1\right)\ne\left(2\right)\)
\(x^2+x+m=0\left(1\right)\)
\(x^2+mx+1=0\left(2\right)\)
\(tương\) \(đương\) \(TH1:\left(1\right)\left(2\right)vô-nghiệm\Leftrightarrow\left\{{}\begin{matrix}\Delta1< 0\\\Delta2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-4m< 0\\m^2-4< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{1}{4}\\-2< m< 2\end{matrix}\right.\)\(\Leftrightarrow\dfrac{1}{4}< m< 2\)
\(TH2:\left(1\right)\left(2\right)có-ngo-kép-chung\)
\(\left(2\right)\Rightarrow\Delta=0\Rightarrow m^2-4=0\Leftrightarrow m=\pm2\Rightarrow\left(1\right):x^2+x-2=0\Leftrightarrow\left[{}\begin{matrix}x1=1\\x2=-2\end{matrix}\right.\left(ktm\right)\)
\(với:m=2\Rightarrow\left(1\right):x^2+x+2=0\left(vô-ngo\right)\)
\(\Rightarrow\dfrac{1}{4}< m< 2\) \(thì....\)
\(\left(1\right)\Leftrightarrow m=-x^2-x\)
Thay vào (2)
\(\left(2\right)\Leftrightarrow x^2-\left(x^2+x\right)x+1=0\\ \Leftrightarrow1-x^3=0\\ \Leftrightarrow\left(1-x\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow x=1\left(x^2+x+1>0\right)\\ \Leftrightarrow m=-1-1=-2\)
Đồng nhất, ta có
\(\left\{{}\begin{matrix}m=2\\m+1=3\end{matrix}\right.\)\(\Rightarrow m=2\)
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
b: Để hai phương trình này tương đương thì \(\left\{{}\begin{matrix}a\cdot\left(-1\right)+2=0\\2\cdot3+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-6\end{matrix}\right.\)
a: Phương trình thứ hai thiếu vế phải rồi bạn