Tìm x,y ( x > y )
\(\sqrt{x}+\sqrt{y}=\sqrt{1980}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x}+\sqrt{y}=6\sqrt{55}.\)
Đặt \(\sqrt{x}=a\sqrt{55},\sqrt{y}=b\sqrt{55}\Rightarrow a+b=6\)
Do x, y nguyên dương và x<y \(\Rightarrow\left(a,b\right)\in\left\{\left(5,1\right);\left(4,2\right)\right\}\)
Thay vào tính => đáp án ..
dễ thôi :)))
\(\Leftrightarrow x+y+2\sqrt{xy}=1980\)
vì x;y là các số nguyên dương nên x+y là số nguyên dương
\(\Rightarrow2\sqrt{xy}\in Z^+\Rightarrow\orbr{\begin{cases}x=0;y=1980\\x=1980;y=0\end{cases}}\)
ĐKXĐ \(x;y\ge0\)=>x;y là các số tự nhiên
<=>\(\sqrt{x}=\sqrt{1980}-\sqrt{y}\)
<=>\(x=1980+y-12\sqrt{55y}\)
Vì x,y nguyên nên \(55y=3025k^2\)(k là số tự nhiên)
<=>\(k^2=\frac{55y}{3025}=\frac{y}{55}\le\frac{1980}{55}=36\)(Vì y bé hơn hoặc = 1980)
<=>k=1;2;3;4;5;6
thay vào và tìm ra x,y
tick nha LẮc
⇔\(\sqrt{x+y-2}-\sqrt{x}-\sqrt{y}-\sqrt{2}=0\)
⇔\(\dfrac{x+y-2-x}{\sqrt{x+y-2}+\sqrt{x}}-\dfrac{y-2}{\sqrt{y}-\sqrt{2}}\) =0
⇔(y-2)(\(\left(\dfrac{1}{\sqrt{x+y-2}+\sqrt{x}}-\dfrac{1}{\sqrt{y}-\sqrt{2}}\right)\)=0
sau đó chắc bạn tự giải được, mik có việc hơi bận '^^