Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{50}=5\sqrt{2}\) \(\Leftrightarrow\sqrt{x}+\sqrt{y}=5\sqrt{2}\left(x,y\in Z^+\right)\)
Ta có: \(5\sqrt{2}=\sqrt{0}+5\sqrt{2}=\sqrt{2}+4\sqrt{2}=2\sqrt{2}+3\sqrt{2}\)
\(=5\sqrt{2}+\sqrt{0}=4\sqrt{2}+\sqrt{2}=3\sqrt{2}+2\sqrt{2}\)
- \(\sqrt{x}+\sqrt{y}=\sqrt{0}+5\sqrt{2}=\sqrt{0}+\sqrt{50}\Rightarrow x=0;y=50\left(KTMDK\right)\)
- \(\sqrt{x}+\sqrt{y}=\sqrt{2}+4\sqrt{2}=\sqrt{2}+\sqrt{32}\Rightarrow x=2;y=32\left(TMDK\right)\)
- \(\sqrt{x}+\sqrt{y}=2\sqrt{2}+3\sqrt{2}=\sqrt{8}+\sqrt{18}\Rightarrow x=8;y=18\left(TMDK\right)\)
- \(\sqrt{x}+\sqrt{y}=5\sqrt{2}+\sqrt{0}=\sqrt{50}+\sqrt{0}\Rightarrow x=50;y=0\left(KTMDK\right)\)
- \(\sqrt{x}+\sqrt{y}=4\sqrt{2}+\sqrt{2}=\sqrt{32}+\sqrt{2}\Rightarrow x=32;y=2\left(TMDK\right)\)
- \(\sqrt{x}+\sqrt{y}=3\sqrt{2}+2\sqrt{2}=\sqrt{18}+\sqrt{8}\Rightarrow x=18;y=8\left(TMDK\right)\)
Vậy nghiệm của phương trình (x;y) = (2;32), (8;18), (32;2), (18;8)
\(\sqrt{x}+\sqrt{y}=6\sqrt{55}.\)
Đặt \(\sqrt{x}=a\sqrt{55},\sqrt{y}=b\sqrt{55}\Rightarrow a+b=6\)
Do x, y nguyên dương và x<y \(\Rightarrow\left(a,b\right)\in\left\{\left(5,1\right);\left(4,2\right)\right\}\)
Thay vào tính => đáp án ..
ĐK: \(\hept{\begin{cases}x\ge1\\y\ge1\end{cases}}\)
pt <=> \(2x\sqrt{y-1}+4y\sqrt{x-1}=3xy.\)
<=> \(xy-2x\sqrt{y-1}+2xy-4y\sqrt{x-1}=0\)
<=> \(x\left(y-1\right)-2\sqrt{x}.\sqrt{x\left(y-1\right)}+x+2\left[y\left(x-1\right)-2\sqrt{y}\sqrt{y\left(x-1\right)}+y\right]=0\)
<=> \(\left(\sqrt{x\left(y-1\right)}-\sqrt{x}\right)^2+2\left(\sqrt{y\left(x-1\right)}-\sqrt{y}\right)^2=0\)
<=> \(\hept{\begin{cases}\sqrt{x\left(y-1\right)}-\sqrt{x}=0\\\sqrt{y\left(x-1\right)}-\sqrt{y}=0\end{cases}}\)vì (\(\left(\sqrt{x\left(y-1\right)}-\sqrt{x}\right)^2+2\left(\sqrt{y\left(x-1\right)}-\sqrt{y}\right)^2\ge0\)với mọi x, y)
<=> \(\hept{\begin{cases}\sqrt{x\left(y-1\right)}=\sqrt{x}\\\sqrt{y\left(x-1\right)}=\sqrt{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}y-1=1\\x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=2\end{cases}}\left(tm\right)\)
Kết luận:...
\(ĐKXĐ:x;y\ge\frac{1}{2}\)
Chia cả 2 vế của pt cho x ; y ta được
\(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}=2\)
Dễ dàng c/m được \(\hept{\begin{cases}\sqrt{2y-1}\le y\\\sqrt{2x-1}\le x\end{cases}\Rightarrow VT\le1+1=2}\)
Dấu "=" xảy ra <=>. x= y = 1
Vậy x = y = 1
Rất easy! Dùng Cô si ngược đê!
ĐKXĐ: \(x,y\ge\frac{1}{2}\)
Theo Cô si (ngược),ta có:
\(VT=x\sqrt{1\left(2y-1\right)}+y\sqrt{1\left(2x-1\right)}\)
\(VT\le x.\frac{2y-1+1}{2}+y.\frac{2x-1+1}{2}\)
\(=xy+yx=2xy=VP\)
Dấu "=" xảy ra \(\Leftrightarrow2x-1=2y-1=1\Leftrightarrow2x=2y=2\Leftrightarrow x=y=1\)
dễ thôi :)))
\(\Leftrightarrow x+y+2\sqrt{xy}=1980\)
vì x;y là các số nguyên dương nên x+y là số nguyên dương
\(\Rightarrow2\sqrt{xy}\in Z^+\Rightarrow\orbr{\begin{cases}x=0;y=1980\\x=1980;y=0\end{cases}}\)