CHo tam giac ABC , lay D thuoc BC , diem E thuoc tia doi cua tia CA sao cho BD = CE . DE cat BC tai M . CM:DM/Me = AC/AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô hướng dẫn nhé :)
Ta thấy \(\Delta EAD=\Delta BAC\) (Hai cạnh góc vuông)
nên góc AED bằng góc ABC. Lại có góc ABC bằng góc CAM (cùng phụ góc ACB)
Vậy góc AED bằng góc MAE hay tam giác EMA cân tại M hay EM = MA.
Ta thấy góc MAD phụ góc MAC, góc MDA phụ góc MEA nên góc MAD bằng góc MDA, hay tam giác AMD cân tại M, từ đó MA = MD.
Tóm lại EM = MA = MD nên M là trung điểm ED, hay AM là trung tuyến cảu tam giác ACE.
Chúc em thi tốt :))
Kẻ \(DI\perp BC,EK\perp BC\left(I,K\in BC\right)\Rightarrow DI//EK\Rightarrow\widehat{IDF}=\widehat{KEF}\) (so le trong)
\(\widehat{B}=\widehat{KCE}\left(=\widehat{ACB}\right)\)
\(\Delta DIB=\Delta EKC\left(ch-gn\right)\Rightarrow DI=EK\) (2 cạnh t/ứ)
\(\Delta IDF=\Delta KEF\left(g.c.g\right)\Rightarrow DF=EF\)
Vậy F là trung điểm của DE.
a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )
Tự vẽ hình
Từ D vẽ DH // CE (H \(\in\) BC )
Vì DH // CE
=> \(\widehat{MDH}=\widehat{MEC}\) (so le trong )
và \(\widehat{DHM}=\widehat{MCE}\) (so le trong )
và \(\widehat{DHB}=\widehat{ACH}\) (đồng vị )
Vì \(\widehat{DHB}=\widehat{ACH}\)
mà \(\widehat{B}=\widehat{ACB}\) ( \(\Delta\) ABC cân tại A )
=> \(\widehat{B}=\widehat{DHB}\)
=> \(\Delta\) DHB cân tại D
=> DB = DH
mà DB = CE
=> DH = CE
Xét \(\Delta\) MDH và \(\Delta\) MCE có :
\(\widehat{MDH}=\widehat{MEC}\) (chứng minh trên )
DH = CE (chứng minh trên )
\(\widehat{DHM}=\widehat{MCE}\) (chứng minh trên )
=> \(\Delta\) MDH = \(\Delta\) MCE (g-c-g )
=> DM = ME (cặp cạnh tương ứng )
=> M là trung điểm của DE
=> đpcm