K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Vì M là trung điểm của BC, N là trung điểm của AD .

⇒⇒ MN là đường trung bình của hình thang ABCD .

⇒MN⇒MN//ABAB//CDCD

mà theo gt Aˆ=900=>AB⊥ADA^=900=>AB⊥AD

=>MN⊥AD=>MN⊥AD

Trong tam giác MAD có :

MN là đường trung trực ( cmt )

MN là đường trung tuyến ( vì N là trung điểm của AD )

⇒ΔMAD⇒ΔMAD cân tại M .

b,

Có ΔMADΔMAD cân tại M −>MADˆ=MDAˆ−>MAD^=MDA^

mà Aˆ=DˆA^=D^

=>Aˆ−MADˆ=Dˆ−MDAˆ=>A^−MAD^=D^−MDA^

=>MABˆ=MDCˆ(đpcm)=>MAB^=MDC^(đpcm).

22 tháng 2 2020

giải ngu như *****

 

4 tháng 9 2019

Làm đc a.b thôi nha còn lại tui chịu mà tôi đoán mò nha

a, Vì M là trung điểm của BC, N là trung điểm của AD .

⇒⇒ MN là đường trung bình của hình thang ABCD .

⇒MN⇒MN//ABAB//CDCD

mà theo gt Aˆ=900=>AB⊥ADA^=900=>AB⊥AD

=>MN⊥AD=>MN⊥AD

Trong tam giác MAD có :

MN là đường trung trực ( cmt )

MN là đường trung tuyến ( vì N là trung điểm của AD )

⇒ΔMAD⇒ΔMAD cân tại M .

b,

Có ΔMADΔMAD cân tại M −>MADˆ=MDAˆ−>MAD^=MDA^

mà Aˆ=DˆA^=D^

=>Aˆ−MADˆ=Dˆ−MDAˆ=>A^−MAD^=D^−MDA^

=>MABˆ=MDCˆ(đpcm)=>MAB^=MDC^(đpcm).

c.?>3 đề bài ko ghi rõ ko hiểu :)

4 tháng 9 2019

Xét \(\Delta\)ABM và \(\Delta\)DMC có:\(\widehat{A}=\widehat{D};\widehat{DMC}=\widehat{ABM}\) ( cùng phụ với \(\widehat{AMB}\) )

\(\Rightarrow\Delta ABM~\Delta DMC\left(g.g\right)\Rightarrow\frac{AB}{DM}=\frac{BM}{MC}=\frac{NA}{CD}\)

\(\Rightarrow AB\cdot CD=DM\cdot AM=a\cdot a=a^2\left(đpcm\right)\)

P/S:Hình như câu b với câu c sai đề ạ:((

4 tháng 9 2019

\(\frac{AB}{DM}=\frac{BM}{MC}=\frac{MA}{CD}\) nha mn

4 tháng 6 2018

a) ta có: AMBˆ+BMCˆ+DMCˆ=180o⇒AMBˆ+DMCˆ=900AMB^+BMC^+DMC^=180o⇒AMB^+DMC^=900

đồng thời: AMBˆ+ABMˆ=900AMB^+ABM^=900

⇒DMCˆ=ABMˆ⇒DMC^=ABM^

xét tam giác ABM và tam giác DMC có:

MABˆ=MDCˆ=900ABMˆ=DMCˆMAB^=MDC^=900ABM^=DMC^

do đó tam giác ABM đồng dạng tam giác DMC(g-g)

⇒ABAM=MDDC⇒AB.DC=AM.MD⇒ABAM=MDDC⇒AB.DC=AM.MD

mà AM=MD, nên : AB.DC=AM.AMAB.DC=AM.AM

b) vì tam giác ABM đồng dạng tam giác DMC nên:

BMMC=ABMDhayBMMC=ABAMBMMC=ABMDhayBMMC=ABAM

đồng thời: MABˆ=MDCˆ=900MAB^=MDC^=900

do đó tam giác ABM đồng dạng tam giác MBC(c-g-c)

4 tháng 3 2022

a) -Qua B kẻ đường thẳng vuông góc với DC tại E.

-Xét tứ giác ABED: \(\widehat{ADE}=\widehat{BAD}=\widehat{DEB}=90^0\)

\(\Rightarrow\)ABED là hình chữ nhật nên \(AD=BE\)\(AB=ED=4\left(cm\right)\)

-Xét △BEC vuông tại E:

\(BE^2+EC^2=BC^2\) (định lí Py-ta-go)

\(\Rightarrow BE^2+\left(DC-DE\right)^2=BC^2\)

\(\Rightarrow BE^2+\left(9-4\right)^2=13^2\)

\(\Rightarrow BE^2=13^2-5^2=144\)

\(\Rightarrow BE=AD=12\left(cm\right)\)

b) \(S_{ABCD}=\dfrac{AD.\left(AB+CD\right)}{2}=\dfrac{12.\left(4+9\right)}{2}=78\left(cm^2\right)\)

c) -Đề sai.

9 tháng 9 2017

Bài làm

ADBCNM

a, Vì M là trung điểm của BC, N là trung điểm của AD .

⇒⇒ MN là đường trung bình của hình thang ABCD .

⇒MN⇒MN//ABAB//CDCD

mà theo gt Aˆ=900=>AB⊥ADA^=900=>AB⊥AD

=>MN⊥AD=>MN⊥AD

Trong tam giác MAD có :

MN là đường trung trực ( cmt )

MN là đường trung tuyến ( vì N là trung điểm của AD )

⇒ΔMAD⇒ΔMAD cân tại M .

b,Có ΔMADΔMAD cân tại M −>MADˆ=MDAˆ−>MAD^=MDA^

mà Aˆ=DˆA^=D^

=>Aˆ−MADˆ=Dˆ−MDAˆ=>A^−MAD^=D^−MDA^

=>MABˆ=MDCˆ(đpcm)=>MAB^=MDC^(đpcm).

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0