Tìm giá trị nhỏ nhất Q = \(x^2+100x-1000\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-100x=x^2-2\cdot50\cdot x+2500-2500\)
\(=\left(x-50\right)^2-2500\) Vậy GTNN là -2500
\(B=x^2-2\cdot x\cdot2+4+1=\left(x-2\right)^2+1\)Vậy GTNN là 1
Đặt \(A=100x^2-20x+2y^2+20y-9\)
\(\Rightarrow A=\left(100x^2-20x+1\right)+\left(2y^2+20y+50\right)-60\)
\(=\left(10x-1\right)^2+2\left(y^2+10y+25\right)-60\)
\(=\left(10x-1\right)^2+2\left(y+5\right)^2-60\)
Vì \(\left(10x-1\right)^2\ge0\forall x\), \(2\left(y+5\right)^2\ge0\forall y\)
\(\Rightarrow\left(10x-1\right)^2+2\left(y+5\right)^2-60\ge-60\forall x,y\)
hay \(A\ge-60\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}10x-1=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}10x=1\\y=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{10}\\y=-5\end{cases}}\)
Vậy \(minA=-60\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{10}\\y=-5\end{cases}}\)
Ta có : Đặt A = 100x2 - 20x + 2y2 + 20y - 9
= (100x2 - 20x + 1 ) + (2y2 + 20y + 50) - 60
= [(10x)2 - 10x - 10x + 1] + 2(y2 - 10y + 25) - 60
= [10x(10x - 1) - (10x - 1)] + 2(y2 - 5y - 5y + 25) - 60
= (10x - 1)(10x - 1) + 2[y(y - 5) - 5(y - 5)] - 60
= (10x - 1)2 + 2(y - 5)2 - 60
Vì \(\hept{\begin{cases}\left(10x-1\right)^2\ge0\forall x\\2\left(y-5\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(10x-1\right)^2+2\left(y-5\right)^2-60\ge-60\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}10x-1=0\\y-5=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{10}\\y=5\end{cases}}\)
Vậy Min A = -60 <=> x = 1/10 ; y = 5
Ta có : x2 + 100x + 100
= x2 + 2.50.x + 2500 - 2400
= (x + 50)2 - 2400
Vì \(\left(x+50\right)^2\ge0\forall x\)
Nên : (x + 50)2 - 2400 \(\ge-2400\forall x\)
Vậy Amin = -2400 khi x = -50
1) \(A=\frac{2x+1}{x^2+2}\)
\(=\frac{\frac{1}{2}\left(x^2+4x+4\right)-\frac{1}{2}\left(x^2+2\right)}{x^2+2}\)
\(=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}-\frac{1}{2}\ge-\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy GTNN của \(A=-\frac{1}{2}\)khi x = -2
Để \(\frac{2008}{x-1000}\)đạt giá trị lớn nhất
Thì \(x-1000\)đạt giá trị dương nhỏ nhất
Mà x nguyên\(=>x=1001\)
a) Ta có: \(\left|x+\frac{3}{2}\right|\ge0\forall x\)
Hay : P \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\) <=> \(x=-\frac{3}{2}\)
Vậy Pmin = 0 tại x = -3/2
b) Ta có: \(\left|3-x\right|\ge0\forall x\)
=> \(\left|3-x\right|+\frac{2}{5}\ge\frac{2}{5}\forall x\)
hay P \(\ge\)2/5 \(\forall\)x
Dấu "=" xảy ra khi: 3 - x = 0 <=> x = 3
Vậy Pmin = 2/5 tại x = 3
a)Có giá trị tuyệt đối của x+3/2 >=0 với mọi x
=> P>=0 với mọi x
P=0 khi x+3/2=0 <=> x=-3/2
Vậy P có giá trị nhỏ nhất là 0 khi x=-3/2
\(Q=x^2+100x-1000=x^2+100x+2500-3500=\left(x+50\right)^2-3500\ge-3500\)
Dấu "=" xảy ra khi: \(x=-50\)