K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2018

a, Xét \(\Delta\)ABC và \(\Delta\)A'B'C', có

\(\Delta\)ABC = \(\Delta\)A'B'C' (gt)

-> AB = A'B'

AC = A'C'

BC = B'C'

=> \(\Delta\)ABC = \(\Delta\)A'B'C' (c.c.c)

=> AH = A'H' (2 cạnh tương ứng)

Chúc bạn học tốt

19 tháng 1 2018

Làm sai be bét oe

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH là cạnh chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

b) Ta có: ΔABH=ΔACH(cmt)

\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{MAH}=\widehat{NAH}\)

Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH là cạnh chung

\(\widehat{MAH}=\widehat{NAH}\)(cmt)

Do đó: ΔAMH=ΔANH(cạnh huyền-góc nhọn)

⇒AM=AN(hai cạnh tương ứng)

c) Ta có: ΔAHB=ΔAHC(cmt)

⇒HB=HC(hai cạnh tương ứng)

Xét ΔBMH và ΔCNH có

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy trong ΔABC cân tại A)

Do đó: ΔBMH=ΔCNH(cạnh huyền-góc nhọn)

d) Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(định nghĩa tam giác cân)

\(\widehat{AMN}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

\(\widehat{AMN}\)\(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên MN//BC(dấu hiệu nhận biết hai đường thẳng song song)

e)

*Tính AB

Ta có: HB=HC(cmt)

mà HB+HC=BC(H nằm giữa B và C)

nên \(BH=CH=\frac{BC}{2}=\frac{12cm}{2}=6cm\)

Áp dụng định lí pytago vào ΔABH vuông tại H, ta được

\(AB^2=BH^2+AH^2\)

hay \(AB^2=6^2+8^2=100\)

\(AB=\sqrt{100}=10cm\)

Vậy: AB=10cm

8 tháng 4 2020

Thank you ^-^

20 tháng 4 2020

help me!!!!!!!!!!!!!!

a: Xét ΔAHC vuôg tại H và ΔAHB vuông tại H có

AB=AC

AH chung

DO đo: ΔAHC=ΔAHB

b: Xét tứ giác BMCN có

H là trung điểm của BC

H là trung điểm của MN

DO đó: BMCN là hình bình hành

Suy ra: BN//AC

c: Xét ΔAQH vuông tạiQ và ΔAMH vuông tại M có

AH chung

\(\widehat{QAH}=\widehat{MAH}\)

Do đó: ΔAQH=ΔAMH

Suy ra: HQ=HM

=>HQ=1/2MN

=>ΔMQN vuông tại Q

Xét ΔBQH vuông tạiQ và ΔBNH vuông tại N có

BH chung

HQ=HN

Do đó; ΔBQH=ΔBNH

Suy ra: BQ=BN

=>BH là đường trung trực của QN

26 tháng 3 2020

Violympic toán 7

Tính chất đường trung trực của một đoạn thẳng

b) Vì ΔAHC = ΔAHB ( câu a )

=> BH = HC ( Hai cạnh tương ứng )

Xét ΔBHN và ΔCHM, ta có:

BH = HC ( cmt )

Góc BHN = Góc CHM ( Hai góc đối đỉnh )

HN = HM ( gt )

=> ΔBHN = ΔCHM ( c-g-c )

=> Góc HMC = Góc BNH ( Hai góc tương ứng )

Mà góc HMC và góc BNH là hai góc so le trong

=> BN // AC

c)Chương II : Tam giác

26 tháng 3 2020

Cảm ơn bạn nha

8 tháng 8 2018

a)

Xét ΔvABD và ΔvHBD, ta có:

BD cạnh chung

∠ABD = ∠HBD ( BD là phân giác của ∠B )

⇒ ΔABD = ΔHBD ( ch-gn ) ( đpcm1 )

⇒ AB = HB ( cctứ ) ⇒ B thuộc đường trung trực của AH (1)

AD = HD ( cctứ ) ⇒ D thuộc đường trung trực của AH (2)

Từ (1), (2) ⇒ BD là đường trung trực của AH

⇒ BD ⊥ AH ( đpcm2 )

b)

Xét ΔvABC và ΔvHBK, ta có:

AB = HB ( cmt )

∠B chung

⇒ ΔABC = ΔHBK ( cgv-gn ) ( đpcm )

c)

ΔBKC: Hai đường cao CA và KH cắt nhau tại D

⇒ D là trực tâm của ΔBKC

⇒ BD là đường cao của ΔBKC

⇒ BD ⊥ KC

Vì BD ⊥ AH (cmt); BD ⊥ KC (cmt)

⇒ AH // KC

⇒ Tứ giác AHCK là hình thang

Hình thang AHCK có: AC = HK (ΔABC = ΔHBK)

⇒ Tứ giác ACHK là hình thang cân (đpcm)