\(\dfrac{2.(1.99+3.97+...+97.3+98.2+99.1)}{1^2+2^2+3^2+...+97^2+98^2+99^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Ta chứng minh công thức \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*)
Với n=1 (*) đúng
Giả sử (*) đúng với n=k, khi đó ta có
\(1^2+2^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1)
Ta chứng minh (1) đúng với n=k+1, từ (1) suy ra:
\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(=\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\left(k+1\right)\frac{2k^2+7k+6}{6}\)
\(=\frac{\left(k+1\right)\left(2k^2+4k+3k+6\right)}{6}=\frac{\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
Theo nguyên lí quy nạp ta có ĐPCM
Áp dụng vào bài toán ta có:
\(B=\frac{98\left(98+1\right)\left(2\cdot98+1\right)}{6}=318549\)
a)\(A=1\cdot2+2\cdot3+...+98\cdot99\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+98\cdot99\left(100-97\right)\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+98\cdot99\cdot100-97\cdot98\cdot99\)
\(3A=98\cdot99\cdot100=\frac{98\cdot99\cdot100}{3}=323400\)
Ta có:
\(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{1}{1\cdot99}+\dfrac{1}{3\cdot97}+...+\dfrac{1}{97\cdot3}+\dfrac{1}{99\cdot1}}\)
\(=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{\dfrac{99+1}{1\cdot99}+\dfrac{97+3}{3\cdot97}+...+\dfrac{1+99}{99\cdot1}}{100}}\)
\(=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{\left(1+\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{3}+...+\dfrac{1}{99}+1\right)}{100}}\)
\(=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{2\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)}{100}}=\dfrac{1}{\dfrac{2}{100}}=\dfrac{100}{2}=50\)
\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{\dfrac{99}{1}+\dfrac{98}{2}+...+\dfrac{1}{99}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{1+\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{\dfrac{100}{100}+\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}=\dfrac{1}{100}\)
a) Đặt B = \(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}\)
\(=100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right)\)
Đặt C = \(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\)
\(=\left(\frac{1}{1.99}+\frac{1}{99.1}\right)+\left(\frac{1}{3.97}+\frac{1}{97.3}\right)+...+\left(\frac{1}{49.51}+\frac{1}{51.49}\right)\)
\(=2\cdot\frac{1}{1.99}+2\cdot\frac{1}{3.97}+...+2\cdot\frac{1}{49.51}\)
\(=2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)\)
Thay B và C vào A
\(\Rightarrow A=\frac{100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}{2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}=\frac{100}{2}=50\)
b) Đặt E = \(\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}\)
\(=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)
\(=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\)
\(=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Thay E vào B
\(\Rightarrow B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)