K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2016

b)Ta chứng minh công thức \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*)

Với n=1 (*) đúng

Giả sử (*) đúng với n=k, khi đó ta có

\(1^2+2^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1)

Ta chứng minh (1) đúng với n=k+1, từ (1) suy ra:

\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(=\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\left(k+1\right)\frac{2k^2+7k+6}{6}\)

\(=\frac{\left(k+1\right)\left(2k^2+4k+3k+6\right)}{6}=\frac{\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

Theo nguyên lí quy nạp ta có ĐPCM

Áp dụng vào bài toán ta có:

\(B=\frac{98\left(98+1\right)\left(2\cdot98+1\right)}{6}=318549\)

 

6 tháng 12 2016

a)\(A=1\cdot2+2\cdot3+...+98\cdot99\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+98\cdot99\left(100-97\right)\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+98\cdot99\cdot100-97\cdot98\cdot99\)

\(3A=98\cdot99\cdot100=\frac{98\cdot99\cdot100}{3}=323400\)

 

21 tháng 4 2017

1230 nha

1 tháng 5 2018
 

B =1.99+2.98+3.97+...+98.2+99.1

19 tháng 2 2018

Đặt \(\frac{A}{B}=\frac{4+\frac{3}{5}+\frac{3}{7}+...+\frac{3}{95}+\frac{3}{97}+\frac{3}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{95.5}+\frac{1}{97.3}+\frac{1}{99.1}}\)

\(\Leftrightarrow\frac{A}{B}=\frac{4+\frac{3}{5}+\frac{3}{7}+...+\frac{3}{93}+\frac{3}{95}+\frac{3}{97}+\frac{3}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+\frac{1}{7.93}+...+\frac{1}{93.7}+\frac{1}{95.5}+\frac{1}{97.3}+\frac{1}{99.1}}\)

\(\Leftrightarrow\frac{A}{B}=\frac{4+3.\frac{1}{5}+3.\frac{1}{7}+...+3.\frac{1}{93}+3.\frac{1}{95}+3.\frac{1}{97}+3.\frac{1}{99}}{1.\frac{1}{99}+\frac{1}{3}.\frac{1}{97}+\frac{1}{5}.\frac{1}{95}+\frac{1}{7}.\frac{1}{93}+...+\frac{1}{93}.\frac{1}{7}+\frac{1}{95}.\frac{1}{5}+\frac{1}{97}.\frac{1}{3}+\frac{1}{99}.1}\)

\(\Leftrightarrow\frac{A}{B}=\frac{4+3+3+...+3+3+3+3}{1.\frac{1}{99}+\frac{1}{3}.\frac{1}{97}+...+\frac{1}{93}.\frac{1}{7}+\frac{1}{95}.\frac{1}{5}.\frac{1}{3}.1}\)

P/s:Tới đây bạn giải tiếp nha! Mình cũng không chắc cho lắm! Khi nào mình biết mình sẽ giải tiếp cho bạn! Nên đừng dis

19 tháng 2 2018

Câu này mình chưa được học mà! Bạn cứ giải tiếp đi xem nào!