Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Ta chứng minh công thức \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*)
Với n=1 (*) đúng
Giả sử (*) đúng với n=k, khi đó ta có
\(1^2+2^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1)
Ta chứng minh (1) đúng với n=k+1, từ (1) suy ra:
\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(=\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\left(k+1\right)\frac{2k^2+7k+6}{6}\)
\(=\frac{\left(k+1\right)\left(2k^2+4k+3k+6\right)}{6}=\frac{\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
Theo nguyên lí quy nạp ta có ĐPCM
Áp dụng vào bài toán ta có:
\(B=\frac{98\left(98+1\right)\left(2\cdot98+1\right)}{6}=318549\)
a)\(A=1\cdot2+2\cdot3+...+98\cdot99\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+98\cdot99\left(100-97\right)\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+98\cdot99\cdot100-97\cdot98\cdot99\)
\(3A=98\cdot99\cdot100=\frac{98\cdot99\cdot100}{3}=323400\)
Đặt \(\frac{A}{B}=\frac{4+\frac{3}{5}+\frac{3}{7}+...+\frac{3}{95}+\frac{3}{97}+\frac{3}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{95.5}+\frac{1}{97.3}+\frac{1}{99.1}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{4+\frac{3}{5}+\frac{3}{7}+...+\frac{3}{93}+\frac{3}{95}+\frac{3}{97}+\frac{3}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+\frac{1}{7.93}+...+\frac{1}{93.7}+\frac{1}{95.5}+\frac{1}{97.3}+\frac{1}{99.1}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{4+3.\frac{1}{5}+3.\frac{1}{7}+...+3.\frac{1}{93}+3.\frac{1}{95}+3.\frac{1}{97}+3.\frac{1}{99}}{1.\frac{1}{99}+\frac{1}{3}.\frac{1}{97}+\frac{1}{5}.\frac{1}{95}+\frac{1}{7}.\frac{1}{93}+...+\frac{1}{93}.\frac{1}{7}+\frac{1}{95}.\frac{1}{5}+\frac{1}{97}.\frac{1}{3}+\frac{1}{99}.1}\)
\(\Leftrightarrow\frac{A}{B}=\frac{4+3+3+...+3+3+3+3}{1.\frac{1}{99}+\frac{1}{3}.\frac{1}{97}+...+\frac{1}{93}.\frac{1}{7}+\frac{1}{95}.\frac{1}{5}.\frac{1}{3}.1}\)
P/s:Tới đây bạn giải tiếp nha! Mình cũng không chắc cho lắm! Khi nào mình biết mình sẽ giải tiếp cho bạn! Nên đừng dis
Câu này mình chưa được học mà! Bạn cứ giải tiếp đi xem nào!