K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2019

Ta có : \(\widehat{BOM}\)\(\widehat{MON}\)\(\widehat{NOC}\)\(180^0\) (kề bù)

           \(\widehat{BOM}\)\(60^0\) + \(\widehat{NOC}\)\(180^0\)

           \(\widehat{BOM}\)+  \(\widehat{NOC}\) = \(120^0\)  \(\left(1\right)\)

\(X\text{ét}\)\(\Delta NOC\)có :

   \(\widehat{NOC}\)+  \(\widehat{ONC}\) + \(\widehat{NCO}\)\(180^0\)

   \(\widehat{NOC}\) + \(\widehat{ONC}\) +  \(60^0\) = \(180^0\)

   \(\widehat{NOC}\) + \(\widehat{ONC}\) = \(120^0\) \(\left(2\right)\)

Từ \(\left(1\right)\)và  \(\left(2\right)\)=) \(\widehat{BOM}\)\(\widehat{ONC}\)

\(X\text{ét}\)\(\Delta OBM\)Và \(\Delta NCO\)có :

         \(\widehat{MBO}\)=  \(\widehat{OCN}\) ( cùng bằng 600 )

      \(\widehat{BOM}\)=  \(\widehat{ONC}\) ( chứng minh trên )

=)   \(\Delta OBM\)đồng dạng với  \(\Delta NCO\)( g-g )

Do \(\Delta OBM\) đồng dạng với  \(\Delta NCO\)

=)   \(\frac{BM}{CO}=\frac{OM}{ON}\)

Mà BO = OC

=) \(\frac{BM}{BO}=\frac{OM}{ON}\)

\(X\text{ét}\)\(\Delta OBM\) Và  \(\Delta NOM\) có :

           \(\frac{BM}{BO}=\frac{OM}{ON}\)

           \(\widehat{B}\)\(=\)\(\widehat{MON}\) (cùng bằng \(60^0\))

  =)  \(\Delta OBM\)đồng dạng với  \(\Delta NOM\) ( c - g - c )

30 tháng 9 2021

toi ko biet 

15 tháng 1 2022

Answer:

C O B A N M

a) Ta có:

Góc NOC = 180 độ - góc MON - góc MOB

Góc NOC = 180 độ - góc MBO - góc MOB

Góc NOC = góc BMO

Xét tam giác MBO và tam giác OCN

Góc MBO = góc OCN = 60 độ 

Góc BMO = góc NOC

=> Tam giác MBO ~ tam giác OCN (g-g) 

=> \(\frac{MO}{ON}=\frac{BO}{CN}=\frac{MB}{OC}\)

b) Do O là trung điểm BC => OC = BO

\(\Rightarrow\frac{MO}{ON}=\frac{MB}{OB}\)

\(\Rightarrow\frac{MO}{MB}=\frac{ON}{OB}\)

\(\Rightarrow\frac{OB}{NO}=\frac{MB}{MO}\)

Xét tam giác OBM và tam giác NOM

Góc OBM = góc NOM = 60 độ

\(\frac{MB}{MO}=\frac{OB}{NO}\)

=> Tam giác OBM ~ tam giác NOM (c-g-c)

=> Góc OMB = góc OMN

=> MO là tia phân giác góc BMN