K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

Câu a dễ..Câu b

Qua A kẻ đ/thẳng //BC cắt CO,BO tại H,K

Có HK//BC nên ta có các hệ thức sau

\(\frac{MB}{MC}=\frac{AK}{AH}\left(1\right)\),\(\frac{NC}{NA}=\frac{BC}{AK}\left(2\right)\),\(\frac{PA}{PB}=\frac{AH}{BC}\left(3\right)\)

Nhân (1),(2) và (3) suy ra ĐPCM

1 tháng 3 2020

Thanks bạn

10 tháng 4 2020

9+9=18

16 tháng 3 2018

Bài dài nên bạm tham khảo đỡ chỗ này nha

http://lazi.vn/edu/exercise/cho-tam-giac-abc-vuong-tai-c-ca-cb-mot-diem-i-o-tren-canh-ab-tren-nua-mat-phang-bo-ab-co-chua-c

1 tháng 3 2023

Bài này là: Bài 27 trang 72 Toán 8 Tập 2 đúng không bạn 

a) \(\Delta ABC\)\(MN\) // \(BC\) \(\left(M\in AB;N\in AC\right)\Rightarrow\Delta AMN\sim\Delta ABC\) (định lí)

\(\Delta ABC\) có \(ML\) // \(AC\) \(\left(M\in AB;L\in BC\right)\Rightarrow\Delta MBL\sim\Delta ABC\) (định lí)

\(\Delta AMN\sim\Delta ABC\) và \(\Delta MBL\sim\Delta ABC\)

\(\Rightarrow\Delta AMN\sim\Delta MBL\)

b) Xét \(\Delta AMN\sim\Delta ABC\) có:

\(\widehat{A}\) chung

\(\widehat{AMN}=\widehat{B};\widehat{ANM}=\widehat{C}\)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{MN}{BC}\)

Tỉ số đồng dạng : \(k=\dfrac{AM}{AB}=\dfrac{1}{2}\left(AM=\dfrac{1}{2}MB\right)\)

Xét \(\Delta MBL\sim\Delta ABC\) có:

\(\widehat{B}\) chung

\(\widehat{BML}=\widehat{A};\widehat{MLK}=\widehat{C}\)

\(\dfrac{BM}{BA}=\dfrac{BL}{BC}=\dfrac{ML}{AC}\)

Tỉ số đồng dạng: \(k'=\dfrac{BM}{BA}=\dfrac{2}{3}\)

Xét \(\Delta AMN\sim\Delta MBL\) có:

\(\widehat{AMN}=\widehat{B};\widehat{ANM}=\widehat{BLM};\widehat{A}=\widehat{BML}\)

\(\dfrac{AM}{MB}=\dfrac{AN}{ML}=\dfrac{MN}{BL}\)

Tỉ số đồng dạng: \(k''=\dfrac{AM}{MB}=\dfrac{1}{2}\)

20 tháng 3 2020

Tự vẽ hình.

a) Xét tam giác OAB có AB // CD

⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)

=> OC = 4cm, DC = 6cm

Vậy OC = 4cm và DC = 6cm

b) Xét tam giác FAB có DC // AB

⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )

c) Theo (1), ta đã có:

OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)

Vì MN // AB mà AB // DC => MN // DC

Xét tam giác ADC có MO// DC

⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)

CMTT : ONDC=OBDBONDC=OBDB (4)

Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )