Phân tích đa thức thành nhân tử :
x^8 + 2500
Mình đang cần , mn giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{xy}{2}-x+\dfrac{x^2}{4}=x\left(\dfrac{y}{2}-1+\dfrac{x}{4}\right)\)
(x2 + x)2 - 2(x2 + x) - 15
= [(x2 + x)2 - 2(x2 + x) + 1] - 16
= (x2 + x + 1)2 - 42
= (x2 + x + 5)(x2 + x - 3)
( x2 + x )2 - 2 ( x2 + x ) - 15
Đặt t = x2 + x , đa thức trở thành
t2 - 2t - 15
= ( t2 + 3t ) - ( 5t + 15 )
= t ( t + 3 ) - 5 ( t + 3 )
= ( t - 5 ) ( t + 3 )
= ( x2 + x - 5 ) ( x2 + x + 3 )
A=x14+x7+1
=(x14+x13+x12)-(x13+x12+x11)+(x11+x10+x9)-(x10+x9+x8)+(x8+x7+x6)-(x6+x5+x4)+(x5+x4+x3)-(x3+x2+x)+(x2+x+1)
Đặt B=x2+x+1
=>A=x12B-x11B+x9B-x8B+x6B-x4B+x3B-xB+B
=>A=B(x12-x11+x9-x8+x6-x4+x3-x+1)
Thay B=x2+x+1 vào A là xong
Bài khó quá
4x⁴+4x-3= (2x)²+2(2x)+1-4
=(2x+1)²-2²=(2x+1-2)(2x+1+2)
=(2x-1)(2x+3)
e) \(8\left(x+3y\right)-16x\left(x+3y\right)=\left(x+3y\right)\left(8-16x\right)=8\left(x+3y\right)\left(1-2x\right)\)
f) \(4x^2\left(x+1\right)+2x^2\left(x+1\right)=\left(x+1\right)\left(4x^2+2x^2\right)=6x^2\left(x+1\right)\)
g) \(3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)=\left(3+5x\right)\left(x-y\right)\)
\(64-x^2-y^2+2xy=64-\left(x^2-2xy+y^2\right)\)
\(=8^2-\left(x-y\right)^2=\left(8-x+y\right)\left(8+x-y\right)\)
1/(x+2)2 -(3x-1)2=(x+2+3x-1)(x+2-3x+1)=4x(-2x+3)=-8x2+12x
2/(x4+x2)(-2x3-2x)=x2(x2+1)-2x(x2+1)=(x2+1)(x2-2x)
Mình nghĩ là đề thiếu đó bạn :)
đề đáng lẽ phải là: \(x^7+x^2+1\)
\(x^7+x^2+1=\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left[x\left(x-1\right)\left(x+3\right)+1\right]\left(x^2+x+1\right)\)
\(=\left[\left(x^2-x\right)\left(x^3+1\right)+1\right]\left(x^2+x+1\right)\)
\(=\left(x^5-x^4-x^2-x+1\right)\left(x^2+x+1\right)\)
x8 + 2500
= (x4)2 + 2.x4.50 + (50)2 - 2.x4.50
= (x4 + 50)2 - (10x2)2
= (x4 + 50 - 10x2)(x4 + 50 + 10x2)