CMR: 1 số chia hết cho 4 viết được dưới dạng hiệu 2 số chính phương chẵn liên tiếp hoặc 2 số chính phương lẻ liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Bảo Bình Đáng Yêu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo link này nhé!
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Câu hỏi của Bảo Bình Đáng Yêu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo link này nhé!
a,b lẻ nên suy ra: (a-1)(b-1) chia hết cho 4.
Ta đặt: a=(2k-1)2;b=(2k+1)2.
=>(m-1)=4k(k-1) (k thuộc Z)
(n-1)=4k(k+1).
=>(m-1)(n-1)=16k2(k-1)(k+1)
Mà k(k-1)(k+1) chia hết cho3 (3 số nguyên liên tiếp).
Do k(k-1)và k(k+1) chia hết cho 2
nên suy ra: k2(k+1)(k-1) chia hết cho 12.
=>(a-1)(b-1)=16k2(k+1)(k-1) chia hết cho 192 khi m,n là SCP lẻ liên tiếp.
Câu hỏi của Bảo Bình Đáng Yêu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo link này nhé!
a = (2m - 1)2 = 4m2 - 4m + 1
b = (2m + 1)^2 = 4m2 + 4m + 1
=> A = (a - 1)(b - 1) = 4m(m -1).4m(m +1)
Vì m(m -1) và m(m+1) đều chia hết cho 2 => A chia hết cho 4.2.4.2 = 64
Mà A chứa m(m-1)(m+1) là tích 3 số nguyên liên tiếp chia hết cho 3
Mà 3 và 64 nguyên tố cùng nhau => A chia hết cho 64.3 = 192
Gọi hai số chính phương chẵn/lẻ liên tiếp là (2k)2 và (2k + 2)2/(2h + 1)2 và (2h + 3)2. Ta có:
\(\left\{{}\begin{matrix}\left(2k+2\right)^2-\left(2k\right)^2=\left(2k+2-2k\right)\left(2k+2+2k\right)=2\left(4k+2\right)=8k+4⋮4\\\left(2h+3\right)^2-\left(2h+1\right)^2=\left(2h+3-2h-1\right)\left(2h+3+2h+1\right)=2\left(4k+4\right)=8k+8⋮4\end{matrix}\right.\)
Vậy...
P/s: Bài làm có thể sai sót, mong mn thông cảm