K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2018

Gọi hai số chính phương chẵn/lẻ liên tiếp là (2k)2 và (2k + 2)2/(2h + 1)2 và (2h + 3)2. Ta có:

\(\left\{{}\begin{matrix}\left(2k+2\right)^2-\left(2k\right)^2=\left(2k+2-2k\right)\left(2k+2+2k\right)=2\left(4k+2\right)=8k+4⋮4\\\left(2h+3\right)^2-\left(2h+1\right)^2=\left(2h+3-2h-1\right)\left(2h+3+2h+1\right)=2\left(4k+4\right)=8k+8⋮4\end{matrix}\right.\)

Vậy...

P/s: Bài làm có thể sai sót, mong mn thông cảm

1 tháng 5 2021

m=(2k+1)2;n=(2k+3)2m=(2k+1)2;n=(2k+3)2 (k thuộc N)

⇒mn−m−n+1=(2k+1)2.(2k+3)2−(2k+1)2−(2k+3)2+1=16k(k+2)(k+1)⇒mn−m−n+1=(2k+1)2.(2k+3)2−(2k+1)2−(2k+3)2+1=16k(k+2)(k+1)

Do k;k+1;k+2k;k+1;k+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

⇒16k(k+2)(k+1)2⋮3⇒16k(k+2)(k+1)2⋮3

+ k chẵn ⇒k(k+2)⋮4⇒k(k+2)⋮4

+k lẻ ⇒(k+1)2⋮4⇒(k+1)2⋮4

⇒16k(k+2)(k+1)2⋮64⇒16k(k+2)(k+1)2⋮64

mn−m−n+1⋮192

1 tháng 5 2021
1/3.x+52/4=64/4
27 tháng 1 2022

Gọi 2 số chính phương liên tiếp là \(a^2\) và \(\left(a+1\right)^2\)

Do a, a + 1 là 2 số tự nhiên liên tiếp 

=> Luôn có 1 số chẵn, 1 số lẻ => \(a\left(a+1\right)\) chẵn

Có \(a^2+\left(a+1\right)^2+a^2.\left(a+1\right)^2\)

\(a^2+\left(a^2+2a+1\right)+a^2\left(a^2+2a+1\right)\)

\(a^4+2a^3+3a^2+2a+1\)

\(\left(a^2+a+1\right)^2=\left[a\left(a+1\right)+1\right]^2\)

=> đpcm

19 tháng 11 2015

Gọi 2 số chính phương liên tiếp đó là n; (n+1)2 

ta có : \(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=\)

Không đúng: VD: 25;36 : 25+36 +25.36=71+900  =971 không là số chính phương

19 tháng 11 2015

mình tính ra là 161 

 

15 tháng 11 2016

Gọi hai số chính phương liên tiếp là k2 và (k+1)2

Ta có:

k2 + (k+1)2 + k2(k+1)2

= k2 + k2 + 2k + 1 +k4 + 2k3 + k2

= k4 + 2k3 + 3k2 + 2k + 1

= (k2+k+1)2

= [k(k+1)+1]2 là số chính phương lẻ.

10 tháng 10 2019

gọi 2 số đó là a; a + 2 (a thuộc N; a chẵn)

có a^2 - (a + 2)^2 = 68

=> a^2 - a^2 - 4a - 4 = 68

=> -4a - 4 = 68

=> -4a = 72

=> a = 18

=> a + 2 = 20

4 tháng 12 2016

goi 2 so chinh phuong lien tiep do la n2;(n+1)2

k2+(k+1)2 + k2.(k+1)2

=k2+k2+2k+1+k4+2k3+k2

=k4+3k2+2k3+2k+1 

=(k2+k+1)2

=[k(k+1)+1]2

4 tháng 12 2016

ket qua cuoi cung chung minh rang so do la so chinh phuong le.vi du ko dung:

25;36:25+36+25.36=71+900=971 ko la so chinh phuong le

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

6
14 tháng 7 2016

nhìn là hết muốn làm

14 tháng 7 2016

sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ

Nhìn là muốn chạy rùi

^-^