CMR\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...\dfrac{1}{2013^2}\) <1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt :
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+.......................+\dfrac{1}{2013^2}\)
Ta thấy :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(.........................\)
\(\dfrac{1}{2013^2}< \dfrac{1}{2012.2013}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+.....................+\dfrac{1}{2012.2013}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...................+\dfrac{1}{2012}-\dfrac{1}{2013}\)
\(\Rightarrow A< 1-\dfrac{1}{2013}< 1\)
\(\Rightarrow A< 1\)
Vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....................+\dfrac{1}{2013^2}< 1\rightarrowđpcm\)
\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2013^2}\)<\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2012.2013}\)
= 1-\(\dfrac{1}{2}\)-\(\dfrac{1}{2}\)+\(\dfrac{2}{3}\)-\(\dfrac{2}{3}\)+...+\(\dfrac{1}{2012}\)-\(\dfrac{1}{2013}\)
=1-\(\dfrac{1}{2013}\)
Vì \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2013^2}\)<1-\(\dfrac{1}{2013}\)
=> dãy trên < 1(đpcm)
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2013^2}\)
Ta có ;
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
...
\(\dfrac{1}{2013^2}< \dfrac{1}{2012.2013}\)
\(\Rightarrow B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2012.2013}\)
\(\Rightarrow B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2013}\)
\(\Leftrightarrow B< 1-\dfrac{1}{2013}\)
\(\Rightarrow B< \dfrac{2012}{2013}\)
Lại có : \(\dfrac{2012}{2013}< \dfrac{3}{4}\)
\(\Rightarrow B< \dfrac{3}{4}\)
* Chắc vậy, sai thì thôg cảm ^^ *
Còn j k hiểu thì ib nha
Ta có:
\(A=\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{2013}{2014!}\)
\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{2014-1}{2014!}\)
\(=\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+...+\dfrac{2014}{2014!}-\dfrac{1}{2014!}\)
\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+...+\dfrac{1}{2013!}-\dfrac{1}{2014!}\)
\(=\dfrac{1}{1!}-\dfrac{1}{2014!}=1-\dfrac{1}{2014!}\)
Do \(1-\dfrac{1}{2014!}< 1\) Nên \(A< 1\)
Vậy \(A=\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{2013}{2014!}< 1\) (Đpcm)
\(A=\dfrac{\dfrac{1}{2013}+\dfrac{2}{2012}+\dfrac{3}{2011}+...+\dfrac{2011}{3}+\dfrac{2012}{2}+\dfrac{2013}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)
\(A=\dfrac{1+\left(\dfrac{1}{2013}+1\right)+\left(\dfrac{2}{2012}+1\right)+\left(\dfrac{3}{2011}+1\right)+...+\left(\dfrac{2012}{2}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)
\(A=\dfrac{\dfrac{2014}{2014}+\dfrac{204}{2013}+\dfrac{2014}{2012}+\dfrac{2014}{2011}+...+\dfrac{2014}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)
\(A=\dfrac{2014\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}=2014\)
mình ko chắc đúng nha !
Số số hạng của tử là :
(2013-1):1+1=2013(số hạng)
\(\dfrac{\dfrac{1}{2013}+\dfrac{2}{2012}+\dfrac{3}{2011}+.....+\dfrac{2011}{3}+\dfrac{2012}{2}+\dfrac{2013}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)
\(=\dfrac{\dfrac{1}{2013}+1+\dfrac{2}{2012}+1+....+\dfrac{2012}{2}+1+\dfrac{2013}{1}-2012}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)
\(=\dfrac{\dfrac{2014}{2013}+\dfrac{2014}{2012}+....+\dfrac{2014}{2}+1}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)
\(=2014\left(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\right)\)
=2014
Mình ghi thêm ở cái dâu bằng thứ 2 cuối cùng trên tử có ghi trừ 2012 là do tử có 2013 hạng tử mà mình chỉ cộng 1 cho 2012 hạng tử nên phải trừ đi 2012
a.
\(a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2=a^2+\left(a^2+a\right)^2+a^2+2a+1\)
\(=\left(a^2+a\right)^2+2\left(a^2+a\right)+1=\left(a^2+a+1\right)^2\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{y}\right)^2-\dfrac{x}{y}=3\\x+\dfrac{1}{y}+\dfrac{x}{y}=3\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{1}{y}\right)^2+x+\dfrac{1}{y}=6\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{y}=2\Rightarrow\dfrac{x}{y}=1\\x+\dfrac{1}{y}=-3\Rightarrow\dfrac{x}{y}=6\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=2\\\dfrac{x}{y}=1\end{matrix}\right.\) \(\Rightarrow...\)
Cho hình bình hành ABCD,cạnh AB=a.AD=b .Tính AC^2+BD^2 theo a và b
giúp em với ạ
post đúng lớp hoặc autodelete