Bài 4
CMR:1/2^2+1/3^2+...+1/2013^2<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}\)
\(=1-\frac{1}{2013}< 1\)( đpcm )
\(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
....
\(\frac{1}{2013^2}< \frac{1}{2012.2013}=\frac{1}{2012}-\frac{1}{2013}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}=1-\frac{1}{2013}< 1\)
\(\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{2013}{1.2...2014}\)
\(=\frac{1}{2}+\frac{1}{1.3}+\frac{1}{1.2.4}+...+\frac{1}{1.2...2012.2014}\)
\(=\frac{1.1.3.4...2012.2014}{2.1.3.4...2012.2014}+\frac{1.2.4.5...2012.2014}{1.3.2.4.5...2012.2014}+...+\frac{1}{1.2.....2012.2014}\)(Quy đồng mẫu)
\(=\frac{1.1.3.4...2012.2014+1.2.4.5...2012.2014+...+1}{1.2...2012.2014}>1\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{2013^2}\\ =\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{2013.2013}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}\\ -1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2012}-\dfrac{1}{2013}\\ =1-\dfrac{1}{2013}< 1\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+..+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}=1-\dfrac{1}{2}+\dfrac{1}{2}+....+\dfrac{1}{2012}-\dfrac{1}{2013}\)
\(\Rightarrow dpcm\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2012}-\dfrac{1}{2013}=1-\dfrac{1}{2013}< 1\left(đpcm\right)\)
ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều
Gọi biểu thức trên là A.
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}.\)
Ta thấy:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}.\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}.\)
..................
\(\dfrac{1}{2013^2}=\dfrac{1}{2012.2013}.\)
\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}\)
\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}.\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2012}-\dfrac{1}{2013}.\)
\(=1-\dfrac{1}{2013}.\)
\(< 1\left(đpcm\right).\)
Vậy \(A< 1.\)
A<1/1.2+1/2.3+......+1/2013.2014
=1-1/2+1/2-1/3+.........+1/2013-1/2014
A<1-1/2014<1
=>A<1 (đpcm)
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
....................
\(\dfrac{1}{2013^2}< \dfrac{1}{2012.2013}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+........+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{2012.2013}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{2013^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+......+\dfrac{1}{2012}-\dfrac{1}{2013}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{2013^2}< 1-\dfrac{1}{2013}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{2013^2}< 1\left(đpcm\right)\)