K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

....................

\(\dfrac{1}{2013^2}< \dfrac{1}{2012.2013}\)

\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+........+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{2012.2013}\)

\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{2013^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+......+\dfrac{1}{2012}-\dfrac{1}{2013}\)

\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{2013^2}< 1-\dfrac{1}{2013}\)

\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{2013^2}< 1\left(đpcm\right)\)

3 tháng 1 2018

Ta có :

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}\)

\(=1-\frac{1}{2013}< 1\)( đpcm )

3 tháng 1 2018

\(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

....

\(\frac{1}{2013^2}< \frac{1}{2012.2013}=\frac{1}{2012}-\frac{1}{2013}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}=1-\frac{1}{2013}< 1\)

6 tháng 4 2015

ủa, nó nhỏ hơn 1 mà sao bn lại ghi lớn hơn 1

6 tháng 4 2015

\(\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{2013}{1.2...2014}\)

\(=\frac{1}{2}+\frac{1}{1.3}+\frac{1}{1.2.4}+...+\frac{1}{1.2...2012.2014}\)

\(=\frac{1.1.3.4...2012.2014}{2.1.3.4...2012.2014}+\frac{1.2.4.5...2012.2014}{1.3.2.4.5...2012.2014}+...+\frac{1}{1.2.....2012.2014}\)(Quy đồng mẫu)

\(=\frac{1.1.3.4...2012.2014+1.2.4.5...2012.2014+...+1}{1.2...2012.2014}>1\)

 

3 tháng 1 2018

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{2013^2}\\ =\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{2013.2013}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}\\ -1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2012}-\dfrac{1}{2013}\\ =1-\dfrac{1}{2013}< 1\)

3 tháng 1 2018

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+..+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}=1-\dfrac{1}{2}+\dfrac{1}{2}+....+\dfrac{1}{2012}-\dfrac{1}{2013}\)

\(\Rightarrow dpcm\)

3 tháng 1 2018

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2012}-\dfrac{1}{2013}=1-\dfrac{1}{2013}< 1\left(đpcm\right)\)

ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều 

6 tháng 1 2018

Gọi biểu thức trên là A.

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}.\)

Ta thấy:

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}.\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}.\)

..................

\(\dfrac{1}{2013^2}=\dfrac{1}{2012.2013}.\)

\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}\)

\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}.\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2012}-\dfrac{1}{2013}.\)

\(=1-\dfrac{1}{2013}.\)

\(< 1\left(đpcm\right).\)

Vậy \(A< 1.\)

6 tháng 1 2018

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2012\cdot2013}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2012}-\dfrac{1}{2013}\\ =1-\dfrac{1}{2013}\\ < 1\)

Vậy ...

4 tháng 1 2018

post đúng lớp hoặc autodelete

A<1/1.2+1/2.3+......+1/2013.2014

    =1-1/2+1/2-1/3+.........+1/2013-1/2014

 A<1-1/2014<1

=>A<1 (đpcm)