K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2018

sai roi

9 tháng 12 2019

Điểm rơi \(\left(1;0;0\right)\) và các hoán vị.Ta UCT:)

Ta bất đẳng thức phụ:

\(\sqrt{7x+9}\ge x+3\) với \(0\le x\le1\)

\(\Leftrightarrow7x+9\ge x^2+6x+9\)

\(\Leftrightarrow7\ge x+6\)

\(\Leftrightarrow x\le1\left(true!!\right)\)

Khi đó ta có:

\(\sqrt{7a+9}\le a+3;\sqrt{7b+9}\le b+3;\sqrt{7c+9}\le c+3\)

\(\Rightarrow\sqrt{7a+9}+\sqrt{7b+9}+\sqrt{7c+9}\le a+b+c+9=10\)

Dấu "=" xảy ra tại \(a=1;b=c=0\) và các hoán vị.

13 tháng 12 2018

số thực ko âm nhé

\(a+b+c=1\Leftrightarrow a;b;c\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le c\end{matrix}\right.\)

\(\sqrt{7a+9}+\sqrt{7b+9}+\sqrt{7c+9}\)

\(=\sqrt{a+6a+9}+\sqrt{b+6b+9}+\sqrt{c+6c+9}\)

\(\ge\sqrt{a^2+6a+9}+\sqrt{b^2+6b+9}+\sqrt{c^2+6c+9}\)

\(=\sqrt{\left(a+3\right)^2}+\sqrt{\left(b+3\right)^2}+\sqrt{\left(c+3\right)^2}\)

\(=a+b+c+9=10\left(a;b;c\ge0\right)\)

\("="\Leftrightarrow\)a;b;c là hoán vị (0;0;1)

30 tháng 5 2021

Ta có \(3a+1\ge\left(\dfrac{\sqrt{10}-1}{3}a+1\right)^2\Leftrightarrow a\left(3-a\right)\ge0\) (luôn đúng)

Do đó \(\sqrt{3a+1}\ge\dfrac{\sqrt{10}-1}{3}a+1\).

Tương tự, \(\sqrt{3b+1}\ge\dfrac{\sqrt{10}-1}{3}b+1;\sqrt{3c+1}\ge\dfrac{\sqrt{10}-1}{3}c+1\).

Do đó \(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\ge\sqrt{10}+2\).

Dấu "=" xảy ra khi chẳng hạn a = 3; b = c = 0

30 tháng 5 2021

Tham khảo:

https://hoc24.vn/hoi-dap/tim-kiem?id=219071991005&q=Cho%203%20s%E1%BB%91%20th%E1%BB%B1c%20kh%C3%B4ng%20%C3%A2m%20a%2Cb%2Cc%20v%C3%A0%20a%20b%20c%3D3%20T%C3%ACm%20GTLN%20v%C3%A0%20GTNN%20c%E1%BB%A7a%20bi%E1%BB%83u%20th%E1%BB%A9c%20K%3D%5C%28%5Csqrt%7B3a%201%7D%20%5Csqrt%7B3b%201%7D%20%5Csqrt%7B3c%201%7D%5C%29

14 tháng 5 2021

Đặt `a=\sqrt{7x+9},b=\sqrt{7y+9},c=\sqrt{7z+9}`
`=>a^2+b^2+c^2=7(x+y+z)+27=34`
`=>a^2=34-a^2-b^2<=16`
`=>9<=a^2<=4`
`=>3<=a<=4`
`=>(a-3)(a-4)<=0`
`<=>a^2+12<=7a`
`=>a>=(a^2+12)/7)`
CMTT:`b>=(b^2)/(7)`
`c>=(c^2+12)/(7)`
`=>a+b+c>=(a^2+b^2+c^2+36)/(7)=10`
Dấu "=" `<=>(x,y,z)=(0,0,1)` và các hoán vị 
Bài này hơi phức tạp xíu 

14 tháng 5 2021

Đặt `a=\sqrt{7x+9},b=\sqrt{7y+9},c=\sqrt{7z+9}`
`=>a^2+b^2+c^2=7(x+y+z)+27=34`
`=>a^2=34-a^2-b^2<=16`
`=>9<=a^2<=16`
`=>3<=a<=4`
`=>(a-3)(a-4)<=0`
`<=>a^2+12<=7a`
`=>a>=(a^2+12)/7)`
CMTT:`b>=(b^2)/(7)`
`c>=(c^2+12)/(7)`
`=>a+b+c>=(a^2+b^2+c^2+36)/(7)=10`
Dấu "=" `<=>(x,y,z)=(0,0,1)` và các hoán vị 
Bài này hơi phức tạp xíu