Cho \(\Delta ABC\) vuông tại A. Tia phân giác của \(\widehat{ABC}\) cắt AC tại D, trên BC lấy điểm E sao cho BE = AB .
a, C/minh: \(\Delta ABD=\Delta EBD\)
b, Tia ED cắt BA tại M. C/minh: EC = AM
c, Nối AE. C/minh: \(\widehat{AEC}=\widehat{EAM}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABD\)và \(\Delta EBD\)có:
\(AB=EB\) (gt)
\(\widehat{ABD}=\widehat{EBD}\) (gt)
\(BD\) cạnh chung
suy ra: \(\Delta ABD=\Delta EBD\) (c.g.c)
b) \(\Delta ABD=\Delta EBD\) \(\Rightarrow\)\(AD=ED\)(2 cạnh tương ứng); \(\widehat{BAD}=\widehat{BED}=90^0\)(2 góc tương ứng)
Xét 2 tam giác vuông: \(\Delta DAM\)và \(\Delta DEC\)có:
\(DA=DE\) (cmt)
\(\widehat{ADM}=\widehat{EDC}\) (dd)
suy ra: \(\Delta DAM=\Delta DEC\) (cạnh góc vuông - góc nhọn kề cạnh ấy)
\(\Rightarrow\)\(AM=EC\)(2 cạnh tương ứng)
c) \(\Delta DAE\) cân tại D (do DA = DE)
\(\Rightarrow\)\(\widehat{DAE}=\widehat{DEA}\)
mà \(\widehat{DAM}=\widehat{DEC}\) ( \(=90^0\))
suy ra: \(\widehat{DAE}+\widehat{DAM}=\widehat{DEA}+\widehat{DEC}\)
hay \(\widehat{MAE}=\widehat{AEC}\) (đpcm)
a) Xét tam giác ABD và EBD có :
BA = BE;
Cạnh BD chung
\(\widehat{ABD}=\widehat{EBD}\)
\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
b) Do \(\Delta ABD=\Delta EBD\Rightarrow AD=ED;\widehat{BAD}=\widehat{BED}=90^o\)
nên \(\widehat{DAM}=\widehat{DEC}\)
Vậy thì \(\Delta ABM=\Delta EDC\left(g-c-g\right)\)
\(\Rightarrow AM=EC\)
c) Ta có DA = DE nên \(\widehat{DAE}=\widehat{DEA}\)
Vậy nên \(\widehat{AEC}=\widehat{DEC}+\widehat{AED}=\widehat{DAM}+EAD=\widehat{EAM}\)
a) Xét \(\Delta ABD\) và \(\Delta EBD\) ta có:
\(BA = BE\) (gt)
\(\widehat {{\rm{ABD}}} = \widehat {{\rm{ EBD}}}\) (do \(BD\) là phân giác)
\(BD\) chung
Suy ra \(\Delta ABD = \Delta EBD\) (c-g-c)
b) Vì \(\Delta ABD = \Delta EBD\) (cmt)
Suy ra \(\widehat {{\rm{BAD}}} = \widehat {{\rm{BED}}} = 90^\circ \) (hai góc tương ứng)
Suy ra \(DE \bot BC\)
Mà \(AH \bot BC\) (gt)
Suy ra \(AH\) // \(DE\)
Suy ra \(ADEH\) là hình thang
Mà \(\widehat {{\rm{DEB}}} = 90\) (cmt)
Suy ra \(ADEH\) là hình thang vuông
c)
Gọi \(K\) là giao điểm của \(AE\) và \(AD\)
Suy ra \(BK\) là phân giác của \(\widehat {{\rm{ABC}}}\)
Mà \(\Delta ABE\) cân tại \(B\) (do \(BA = BE\) )
Suy ra \(BK\) cũng là đường cao
Xét \(\Delta ABE\) có hai đường cao \(BK\) và \(AH\) cắt nhau tại \(I\)
Suy ra \(I\) là trực tâm của \(\Delta ABE\)
Suy ra \(EF \bot AB\)
Mà \(AC \bot AB\) (do \(\Delta ABC\) vuông tại \(A\))
Suy ra \(AC\) // \(EF\)
Suy ra \(ACEF\) là hình thang
Mà \(\widehat {{\rm{CAE}}} = 90^\circ \)(gt)
Suy ra \(ACEF\) là hình thang vuông
A)Xét tam giác ABD và EBD
DB chung
\(\widehat{EBD}=\widehat{DBA}\)
AB=AE
=> tam giác ABD = tam giác EBD
B)DE=AD
DE\(⊥\)BC
Xét tam giác vuông DEC và DAM
\(\widehat{CDE}=\widehat{MDA}\)
AD=DE
=> tam giác ADM = tam giác EDC => CE =AM
C) MÌNH KO BIẾT
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔABD=ΔEBD)
\(\widehat{ADM}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADM=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AM=EC(Hai cạnh tương ứng)
c) Xét ΔBAE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAE}=\widehat{BEA}\)(hai góc ở đáy)
mà \(\widehat{BAE}+\widehat{MAE}=180^0\)(hai góc kề bù)
và \(\widehat{BEA}+\widehat{AEC}=180^0\)(hai góc kề bù)
nên \(\widehat{AEC}=\widehat{EAM}\)
Lời giải:
a. Xét tam giác $ABD$ và $EBD$ có:
$AB=EB$
$BD$ chung
$\widehat{ABD}=\widehat{EBD}$ (do $BD$ là phân giác $\widehat{B}$)
$\Rightarrow \triangle ABD=\triangle EBD$ (c.g.c)
b.
Từ tam giác bằng nhau phần a suy ra:
$AD=DE$
$\widehat{BED}=\widehat{BAD}=90^0$
$\Rightarrow DE\perp BC$
$\Rightarrow \widehat{DEC}=90^0$
Xét tam giác $ADM$ và $EDC$ có:
$AD=ED$ (cmt)
$\widehat{ADM}=\widehat{EDC}$ (đối đỉnh)
$\widehat{DAM}=\widehat{DEC}=90^0$
$\Rightarrow \triangle ADM=\triangle EDC$ (g.c.g)
$\Rightarrow AM=EC$
c.
Từ tam giác bằng nhau phần b suy ra:
$\widehat{M_1}=\widehat{C_1}$
$DM=DC$
Mà $DE=AD$
$\Rightarrow DM+DE=DC+AD$
$\Rightarrow ME=AC$
Xét tam giác $AEM$ và $EAC$ có:
$AM=EC$ (cmt)
$EM=AC$ (cmt)
$\widehat{M_1}=\widehat{C_1}$ (cmt)
$\Rightarrow \triangle AEM=\triangle EAC$ (c.g.c)
$\Rightarrow \widehat{EAM}=\widehat{AEC}$
đố các bạn
bé kia chăn vịt khác thường
buộc đi cho được chẵn hàng mới ưa
hàng 2 xếp thấy chưa vừa,
hàng 3 xếp vẫn còn thừa 1 con,
hàng 4 xếp vẫn chưa tròn,
hàng 5 xếp thiếu 1 con mới đầy
xếp thành hàng 7, đẹp thay!
vịt bao nhiêu ? tính được ngay mới tài !
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
Cho tam giác ABC vuông tại A. tia phân giác của góc ABC cắt AC tại D. lấy E trên cạnh BC sao cho BE = AB.
a) Chứng minh :tan giác ABD = tam giác EBD.
b) Tia ED cắt BA tại M. chứng minh : EC = AM
c) Nối AE. Chứng minh : góc AEC = góc EAM
b,VÌ \(\Delta ABD=\Delta EBD\)nên
AD=DE ( hai cạnh tương ứng)
Xét \(\Delta MAD\)và \(\Delta DEC\)có:
\(\widehat{MAD}=\widehat{DEC}=90^o\)
AD=DE (cmt)
\(\widehat{ADM}=\widehat{ADC}\)( 2 gíc đối đỉnh)
=> AM=EC( hai cạn tương ứng ) (đpcm)
Hình vẽ của mình chưa đúng nên bạn vẽ cho đúng nhé. còn cách làm thì đúng rồi đó.
a) Xét \(\Delta ABD\) và \(\Delta EBD\), ta có:
AB=EB (gt)
\(\widehat{ABD}=\widehat{EBD}\) ( vì BD là tia phân giác của \(\widehat{ABC}\))
BD chung
\(\Rightarrow\Delta ABD=\Delta EBD\) (c-g-c)
b) Vì \(\Delta ABD=\Delta EBD\)
\(\Rightarrow\) \(\widehat{BAD}=\widehat{BED}=90^0\) ( 2 góc tương ứng)
\(\Rightarrow AD=DE\) ( 2 cạnh tương ứng)
Ta có: \(\widehat{BAD}+\widehat{MAD}=180^0\)
\(90^0+\widehat{MAD}=180^0\)
\(\widehat{MAD}=90^0\)
Ta lại có: \(\widehat{BED}+\widehat{CED}=180^0\)
\(90^0+\widehat{CED}=180^0\)
\(\widehat{CED}=90^0\)
Xét \(\Delta MAD\) và \(\Delta CED\), ta có:
\(\widehat{CED}=\widehat{MAD}\) (cmt)
AD=DE ( cmt)
\(\widehat{ADM}=\widehat{EDC}\) ( đối đỉnh)
\(\Rightarrow\Delta MAD=\Delta CED\) (g-c-g)
\(\Rightarrow EC=AM\) ( 2 cạnh tương ứng)
c) Vì \(\Delta MAD=\Delta CED\)
\(\Rightarrow DC=DM\) ( 2 cạnh tướng ứng)
\(\Rightarrow\widehat{AMD}=\widehat{ECD}\) ( 2 góc tương ứng)
Ta có: MD+ DE=ME
DC+DA=AC
mà DC=DM, DE=DA nên ME=AC
Xét \(\Delta MAE\) và \(\Delta CEA\), ta có:
AM=EC (câu b)
\(\widehat{AMD}=\widehat{ECD}\) (cmt)
ME=AC (cmt)
\(\Rightarrow\Delta MAE=\Delta CEA\) ( c-g-c)
\(\Rightarrow\widehat{AEC}=\widehat{EAM}\) (2 góc tương ứng)