Cho tam giác ABC. Trên tia đối của tia AB lấy M sao cho AB = AM. Trên tia đối của tia AC lấy N sao cho AC=AN. Từ A kẻ các đường thẳng song song vs BC, BN cắt BN,BC ở E và F.
CM: NE=AF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC và ΔAEF có
AB=AE
\(\widehat{BAC}=\widehat{EAF}\)
AC=AF
Do đó: ΔABC=ΔAEF
Suy ra: \(\widehat{ABC}=\widehat{AEF}\)
mà hai góc này là hai góc ở vị trí so le trong
nên FE//BC
a) Xét tam giác EAD và tam giác BAC ta có
+) AD = AB( gt)
+) AE = AC(gt)
+) A1=A2 ( Hai góc đối đỉnh)
=> tam giác EAD = tam giác BAC (c.g.c)
=> C1=E1( hai góc tương ứng) mà C1 và E1 là hai góc so le trong
=> DE// BC
Xét \(\Delta BNC\) có A là trung điểm của CN
Mà AE // BC
\(\Rightarrow\) E là trung điểm BN
=> EB=EN
Xét \(\Delta ABE;\Delta BÀF\) có :
\(\widehat{EAB}=\widehat{ABF}\left(slt\right)\\ AB\left(chung\right)\\ \widehat{EBA}=\widehat{FAB}\left(slt\right)\\ \Rightarrow\Delta ABE=\Delta BAF\left(g-c-g\right)\\ \Rightarrow BE=AF\\ \Rightarrow NE=AF\)