K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2021

a) Xét \(\Delta CEF\)và \(\Delta CAB\)có:

\(\widehat{CFE}=\widehat{CBA}\left(=90^0\right)\).

\(\widehat{BCA}\)chung.

\(\Rightarrow\Delta CEF~\Delta CAB\left(g.g\right)\)(điều phải chứng minh).

26 tháng 4 2021

b) Xét \(\Delta ABC\)và \(\Delta FBK\)có:

\(\widehat{KBC}\)chung.

\(\widehat{BAC}=\widehat{BFK}\left(=90^0\right)\).

\(\Rightarrow\Delta ABC~\Delta FBK\left(g.g\right)\).

\(\Rightarrow\frac{BA}{BF}=\frac{BC}{BK}\)(tỉ số đồng dạng).

\(\Rightarrow BA.BK=BF.BC\)(điều phải chứng minh).

28 tháng 7 2019

A B M C O O 1 2 O I E D N

a) Có ^AO1O2 = ^AO1M/2 = 1/2.Sđ(AM của (O1= ^ABM = ^ABC. Tương tự ^AO2O1 = ^ACB

Suy ra \(\Delta\)AO1O2 ~ \(\Delta\)ABC (g.g) (đpcm).

b) Từ câu a ta có \(\Delta\)AO1O2 ~ \(\Delta\)ABC. Hai tam giác này có đường trung tuyến tương ứng AO,AI

Khi đó \(\Delta\)AOO1 ~ \(\Delta\)AIB (c.g.c) => \(\frac{AO}{AO_1}=\frac{AI}{AB}\). Đồng thời ^OAI = ^O1AB 

=> \(\Delta\)AOI ~ \(\Delta\)AO1B (c.g.c). Mà \(\Delta\)AO1B cân tại O1 nên \(\Delta\)AOI cân tại O (đpcm).

c) Xét đường tròn (O1): ^DAM nội tiếp, ^DAM = 900 => DM là đường kính của (O1)

=> ^DBM = 900 => DB vuông góc với BC. Tương tự EC vuông góc với BC

Do vậy BD // MN // CE. Bằng hệ quả ĐL Thales, dễ suy ra \(\frac{ND}{NE}=\frac{MB}{MC}\)(1)

Áp dụng ĐL đường phân giác trong tam giác ta có \(\frac{MB}{MC}=\frac{AB}{AC}\)(2)

Từ (1) và (2) suy ra \(\frac{ND}{NE}=\frac{AB}{AC}\)=> ND.AC = NE.AB (đpcm).

15 tháng 3 2020

a, Ta có : O là trung điểm BC

D là trung điểm AC

=> OD là đường trung bình \(\Delta ABC\)

=> OD//AB và \(OD=\frac{1}{2}AB\)

\(AB\perp AC\) => \(OD\perp AC\)

=> \(\widehat{ODC}=90^o\)

Xét \(\Delta ABC\)\(\Delta DOC\) có :

\(\widehat{C}:chung\)

\(\widehat{BAC}=\widehat{ODC}=90^o\)

=> \(\Delta ABC\sim\Delta DOC\left(g.g\right)\)

b, Xét \(\Delta AOH\)\(\Delta DOA\) có :

\(\widehat{O}:chung\)

\(\widehat{OAH}=\widehat{ODA}=90^o\)

=> \(\Delta AOH\sim\Delta DOA\left(g.g\right)\)

=> \(\frac{OA}{OD}=\frac{OH}{OA}\) => \(OA^2=OD.OH\)

a: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là đường cao

Ta có: ΔABC vuông tại A

mà AD là đường trung tuyến

nên AD=BD=CD=BC/2

=>ΔABD vuông cân tại D và ΔACD vuông cân tại D

b: DA=DB=DC=BC/2(đã chứng minh)

18 tháng 1 2022

A B C D

gtΔABC ; AB = AC ; góc A = 90o. D thuộc BC ; BD = CD . 
kl

a) ΔABD và ΔACD là tam giác vuông cân .

b) DA = DB = DC 

Câu a mk ko nhớ cách làm 

b) Do ΔABC vuông cân 

=> B = C = \(\dfrac{90}{2}=45^o\) ; AB = AC .

D là trung điểm BC => AD là đường trung tuyến của ΔABC .

=> AD = \(\dfrac{1}{2}BC\) 

=> AD = DB = DC