Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
góc OAC+góc AED=90 độ
=>góc OAC+góc AHD=90 độ
=>góc OAC+góc ABC=90 độ
=>góc OAC=góc OCA
=>OA=OC và góc OBA=góc OAB
=>OA=OB=OC
=>O là trung điểm của BC
b: góc KAB+góc OAB=90 độ
gócHAB+góc OBA=90 độ
mà góc OAB=góc OBA
nên góc KAB=góc HAB
=>AB là phân giác của góc HAK
c: ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
a) Xét ΔABD vuông tại A và ΔECD vuông tại E có
\(\widehat{ADB}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔABD\(\sim\)ΔECD(g-g)
b) Xét ΔABF có
K là trung điểm của AF(gt)
M là trung điểm của AB(gt)
Do đó: KM là đường trung bình của ΔABF(Định nghĩa đường trung bình của tam giác)
Suy ra: KM//BF(Định lí 2 về đường trung bình của tam giác)
mà BF\(\perp\)BC(gt)
nên KM\(\perp\)BC
Xét ΔCKB có
KM là đường cao ứng với cạnh BC(cmt)
BA là đường cao ứng với cạnh CK(gt)
KM cắt BA tại M(gt)
Do đó: M là trực tâm của ΔCKB(Tính chất ba đường cao của tam giác)
Suy ra: BK\(\perp\)CM
hay BK\(\perp\)OC(Đpcm)
a, Xét Δ HAC và Δ ABC, có :
\(\widehat{AHC}=\widehat{BAC}=90^o\)
\(\widehat{HCA}=\widehat{ACB}\) (góc chung)
=> Δ HAC ∾ Δ ABC (g.g)
=> \(\dfrac{HA}{AB}=\dfrac{HC}{AC}\)
=> \(\dfrac{HA}{HC}=\dfrac{AB}{AC}\)
b, Xét Δ AHB và Δ CHA, có :
\(\dfrac{HA}{HC}=\dfrac{AB}{AC}\) (cmt)
\(\widehat{AHB}=\widehat{CHA}=90^o\)
=> Δ AHB ∾ Δ CHA (g.g)
=> \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)
=> \(AH^2=HB.CH\)
a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
=>ΔHAC đồng dạng với ΔABC
b: Xét ΔABC vuông tại A có AH là đường cao
nên HA^2=HB*HC
c: ΔHAC vuông tại H có HE là trung tuyến
nên AC=2HE
=>AC^2=4*HE^2
=>CH*CB=4*HE^2
a, Ta có : O là trung điểm BC
D là trung điểm AC
=> OD là đường trung bình \(\Delta ABC\)
=> OD//AB và \(OD=\frac{1}{2}AB\)
Mà \(AB\perp AC\) => \(OD\perp AC\)
=> \(\widehat{ODC}=90^o\)
Xét \(\Delta ABC\) và \(\Delta DOC\) có :
\(\widehat{C}:chung\)
\(\widehat{BAC}=\widehat{ODC}=90^o\)
=> \(\Delta ABC\sim\Delta DOC\left(g.g\right)\)
b, Xét \(\Delta AOH\) và \(\Delta DOA\) có :
\(\widehat{O}:chung\)
\(\widehat{OAH}=\widehat{ODA}=90^o\)
=> \(\Delta AOH\sim\Delta DOA\left(g.g\right)\)
=> \(\frac{OA}{OD}=\frac{OH}{OA}\) => \(OA^2=OD.OH\)