K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

Ta có: AE = EB 
CD/DB = AC/AB (tính chất đường phân giác) 
AH = AB.cosA, HC = BC.cosC 
Theo định lí Céva ta có: 
AD, BH, CE đồng quy <=> 
AH/HC.CD/DB.BE/EA = 1 
<=> AH/HC.CD/DB = 1 
<=> AB.cosA/(BC.cosC).AC/AB = 1 
<=> (AC.cosA)/(BC.cosC) = 1 
<=> AC.cosA = BC.cosC (đpcm)

P/s: Tham khảo nha

a: Xét ΔHFA vuông tại F và ΔHDC vuông tại D có

\(\widehat{FHA}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔHFA~ΔHDC

=>\(\dfrac{HF}{HD}=\dfrac{HA}{HC}\)

=>\(HF\cdot HC=HD\cdot HA\left(1\right)\)

Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔHFB~ΔHEC
=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)

=>\(HF\cdot HC=HB\cdot HE\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HD=HF\cdot HC=HB\cdot HE\)

c: Xét tứ giác AFHE có \(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

nên AFHE là tứ giác nội tiếp

Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)

nên BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)

nên CEHD là tứ giác nội tiếp

Ta có: \(\widehat{EFH}=\widehat{EAH}\)(AEHF là tứ giác nội tiếp)

\(\widehat{DFH}=\widehat{DBH}\)(BFHD là tứ giác nội tiếp)

mà \(\widehat{EAH}=\widehat{DBH}\left(=90^0-\widehat{ECB}\right)\)

nên \(\widehat{EFH}=\widehat{DFH}\)

=>FH là phân giác của góc EFD

Ta có: \(\widehat{FEH}=\widehat{FAH}\)(AEHF là tứ giác nội tiếp)

\(\widehat{DEH}=\widehat{DCH}\)(ECDH là tứ giác nội tiếp)

mà \(\widehat{FAH}=\widehat{DCH}\left(=90^0-\widehat{ABD}\right)\)

nên \(\widehat{FEH}=\widehat{DEH}\)

=>EH là phân giác của góc FED

Xét ΔFED có

EH,FH là các đường phân giác

Do đó: H là giao điểm của ba đường phân giác trong ΔFED

a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)

\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AM=MB=AN=NC

Xét ΔAMO vuông tại M và ΔANO vuông tại N có 

AO chung

AM=AN(cmt)

Do đó: ΔAMO=ΔANO(cạnh huyền-cạnh góc vuông)

b) Ta có: ΔAMO=ΔANO(cmt)

nên \(\widehat{MAO}=\widehat{NAO}\)(hai góc tương ứng)

hay \(\widehat{BAH}=\widehat{CAH}\)

mà tia AH nằm giữa hai tia AB,AC

nên AH là tia phân giác của \(\widehat{BAC}\)

c) Xét ΔAHB và ΔAHC có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}=\widehat{CAH}\)(cmt)

AH chung

Do đó: ΔAHB=ΔAHC(c-g-c)

Suy ra: HB=HC(hai cạnh tương ứng)

Ta có: ΔAHB=ΔAHC(cmt)

nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên  \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay \(AH\perp BC\)(đpcm)

22 tháng 2 2021

Hình vẽ : tự vẽ

a) Ta có : tan giác ABC cân tại A ( gt )

\(\Rightarrow\) \(\left\{{}\begin{matrix}AB=AC\\\widehat{B}=\widehat{C}\end{matrix}\right.\)( t/c \(\Delta\) cân )

  Ta có : AB = AC ( cmt )

Mà : M là trung điểm của AB ( gt ), N là trung điểm của AC ( gt )

 \(\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}AC\)

\(\Rightarrow AM=AN\)

Xét : \(\Delta\)AMO và \(\Delta\)ANO có

Cạnh AO chung

AM =AN (cmt )

 \(\widehat{AMO}=\widehat{ANO}=90^0\left(CM\perp AB,BN\perp AC\right)\)

\(\Rightarrow\Delta AMO=\Delta ANO\left(ch-cgv\right)\)

b) Có \(\Delta AMO=\Delta ANO\left(cmt\right)\)

\(\Rightarrow\widehat{MAO}=\widehat{NAO}\) ( 2 cạnh tương ứng ) 

Ta có :

\(\widehat{MAO}=\widehat{NAO}\left(cmt\right)\)

Mà : Tia AH nằm giữa tia AB và tia AC

\(\Rightarrow\) AH là tia phân giác của \(\widehat{A}\) ( đpcm )

c) Ta có : 

\(\Delta ABC\) cân tại A ( gt ), AH là tia phân giác của \(\widehat{A}\) ( cmt )

\(\Rightarrow\) AH cùng là đường cao và trung truyến

\(\Rightarrow\left\{{}\begin{matrix}AH\perp BC\\HB=HC\end{matrix}\right.\)( tính chất đường cao và trung tuyến )

d) Ta có :

 \(AH\perp BC\left(cmt\right)\)

\(\Rightarrow\widehat{OHC}=90^0\)

\(\Rightarrow\)OC lớn hơn HC

Mà HC = HB ( cmt )

\(\Rightarrow\) OC lớn hơn HB ( đpcm )

                                                             -Hết-

1 tháng 8 2023

loading...

a: Xét ΔABD và ΔAMD có

AB=AM

góc BAD=góc MAD

AD chung

Do đó; ΔABD=ΔAMD

b: Xét ΔDBN và ΔDMC có

góc DBN=góc DMC

DB=DM

góc BDN=góc MDC

Do đó; ΔDBN=ΔDMC

=>BN=MC

c: Xét ΔANC có AB/BN=AM/MC

nên BM//CN