K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

Ta có: AE = EB 
CD/DB = AC/AB (tính chất đường phân giác) 
AH = AB.cosA, HC = BC.cosC 
Theo định lí Céva ta có: 
AD, BH, CE đồng quy <=> 
AH/HC.CD/DB.BE/EA = 1 
<=> AH/HC.CD/DB = 1 
<=> AB.cosA/(BC.cosC).AC/AB = 1 
<=> (AC.cosA)/(BC.cosC) = 1 
<=> AC.cosA = BC.cosC (đpcm)

P/s: Tham khảo nha

DD
24 tháng 5 2022

a) Ta có: \(\widehat{AMO}=\widehat{ADO}=\widehat{ANO}=90^o\) nên \(M,N,D\) cùng nhìn \(AO\) dưới một góc vuông suy ra \(M,D,O,N,A\) cùng thuộc một đường tròn. 

b) Gọi \(F\) là giao điểm của \(AC\) và đường tròn \(\left(O\right)\).

\(\Delta ANF\sim\Delta ACN\left(g.g\right)\) suy ra \(AN^2=AC.AF\).

Xét tam giác \(AHN\) và tam giác \(AND\):

\(\widehat{HAN}=\widehat{NAD}\) (góc chung) 

\(\widehat{ANH}=\widehat{ADN}\) (vì \(AMDON\) nội tiếp, \(\widehat{ANH},\widehat{ADN}\) chắn hai cung \(\stackrel\frown{AM},\stackrel\frown{AN}\) mà \(AM=AN\))

\(\Rightarrow\Delta AHN\sim\Delta AND\left(g.g\right)\)

suy ra \(AN^2=AH.AD\)

suy ra \(AC.AF=AH.AD\)

\(\Rightarrow\Delta AFH\sim\Delta ADC\left(c.g.c\right)\Rightarrow\widehat{AFH}=\widehat{ADC}=90^o\)

suy ra \(\widehat{HFC}=90^o\) mà \(\widehat{BFC}=90^o\) (do \(F\) thuộc đường tròn \(\left(O\right)\))

suy ra \(B,H,F\) thẳng hàng do đó \(BH\) vuông góc với \(AC\).

Tam giác \(ABC\) có hai đường cao \(AD,BF\) cắt nhau tại \(H\) suy ra \(H\) là trực tâm tam giác \(ABC\)

23 tháng 5 2022

Bạn check lại và đánh lại đề để mình có thể giúp đỡ nha.

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0

a

Đường tròn (O)(O), đường kính AHAH có \(\widehat{AMH}\)=90

HMABAMH^=90∘⇒HM⊥AB.

ΔAHBΔAHB vuông tại HH có HMAB

AH2=AB.AMHM⊥AB⇒AH2=AB.AM.

Chứng minh tương tự AH2=AC.ANAH2=AC.AN.

\(\Rightarrow\) AB.AM=AC.ANAB.AM=AC.AN.

B

Theo câu a ta có AB.AM=AC.AN

AMAC=ANABAB.AM=AC.AN⇒AMAC=ANAB.

Tam giác AMNAMN và tam giác ACBACB có \(\widehat{MAN}\)MAN^ chung và AMAC=ANABAMAC=ANAB.

ΔAMNΔACB⇒ΔAMN∼ΔACB (c.g.c).

\(\widehat{AMN}\)=\(\widehat{ACB}\)

c.

Tam giác ABCABC vuông tại AA có II là trung điểm của BC

IA=IB=ICBC⇒IA=IB=IC.

ΔIAC⇒ΔIAC cân tại I

\(\widehat{IAC}\)= \(\widehat{ICA}\)

Theo câu b ta có \(\widehat{AMN}\)= \(\widehat{ACB}\)
 

\(\widehat{IAC}\)= \(\widehat{AMN}\)

Mà \(\widehat{BAD}\)\(+\widehat{IAC}\)=90

\(\widehat{BAD}\)+ \(\widehat{AMN}\)
=90

\(\Rightarrow\widehat{ADM}\)
=90
BAD^+IAC^=90∘⇒BAD^+AMN^=90∘⇒ADM^=90∘
.

Ta chứng minh ΔABCΔABC vuông tại AA có AHBC

AH2=BH.CHAH⊥BC⇒AH2=BH.CH.

Mà BC=BH+CH

1AD=BH+CHBH.CH

1AD=1HB+1HC.

\(\Rightarrow\) BMNCBMNC là tứ giác nội tiếp.

10 tháng 4 2021

TRẢ HIỂU GÌ ?????????????????????