cho a/b=b/c=c/d=d/a trong đó a+b+c+d khác 0. chứng minh rằng a^20b^11c^2011=d^2042?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a=b=c=d=1
=> a20.b11.c2011 = d2042 ( = 1) (dpcm)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a =b=c =d
=> a20.b11.c2011 =d20.d11.d2011 =d20+11+2011 =d2042
Áp dụng tính chất dãy tỉ số bằng nhau ta có
a / b = b/c = c/d = d/a = a+b+c+d/b+c+d+a = 1
===> a=b=c=d
===> a2.b11.c2011=a2.a11.a2011=a2+11+2011=a2024
Mà a= d nên a2024=d2024 hay a2.b11.c2011=d2024 ( đậu phộng ***** mày)
đpcm
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Bạn vào phần Câu hỏi tương tự ý. Có nhiều bn có câu hỏi giống lắm.
-Học tốt-
Câu 2:
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3bk\cdot b}{11\cdot b^2k^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{7k^2+3k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\cdot d^2k^2+3\cdot dk\cdot d}{11\cdot d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)
Do đó: \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)