Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow\dfrac{a^{20}.b^{11}.c^{2011}}{d^{2042}}=\dfrac{a^{20}.a^{11}.a^{2011}}{a^{2042}}=\dfrac{a^{2042}}{a^{2042}}=1\)
Vậy ...
+, Xét \(a+b+c+d=0\) ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\)
\(\Rightarrow\left\{{}\begin{matrix}ac=b^2\\bd=c^2\\ac=d^2\end{matrix}\right.\Rightarrow a=b=c=d\)(1)
Thay (1) vào biểu thức cần tìm ta được:
\(\dfrac{a^{20}.a^{11}.a^{2011}}{a^{2042}}=\dfrac{a^{2042}}{a^{2042}}=1\)(*)
+, Xét \(a+b+c+d\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\)(2)
Thay (2) vào biểu thức cần tìm ta được:
\(\dfrac{a^{20}.a^{11}.a^{2011}}{a^{2042}}=\dfrac{a^{2042}}{a^{2042}}=1\)(**)
Từ (*) và (**) suy ra \(\dfrac{a^{20}.a^{11}.a^{2011}}{a^{2042}}=1\)
Vậy............
Chúc bạn học tốt!!!
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a=b=c=d=1
=> a20.b11.c2011 = d2042 ( = 1) (dpcm)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a =b=c =d
=> a20.b11.c2011 =d20.d11.d2011 =d20+11+2011 =d2042
Áp dụng tính chất dãy tỉ số bằng nhau ta có
a / b = b/c = c/d = d/a = a+b+c+d/b+c+d+a = 1
===> a=b=c=d
===> a2.b11.c2011=a2.a11.a2011=a2+11+2011=a2024
Mà a= d nên a2024=d2024 hay a2.b11.c2011=d2024 ( đậu phộng ***** mày)
đpcm
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{d}=1\)
Nên a=b=c=d
=> ĐPCM