Chứng minh rằng : 3^2 -6x +4 >0 với mọi số thực x
giup em vs mọi người
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x2 - 6x + 4
= 3( x2 - 2x + 1) + 1
= 3( x - 1)2 + 1
Do : 3( x - 1)2 lớn hơn hoặc bằng 0 với mọi x thuộc R
=> 3( x - 1)2 + 1 > 0 với mọi x thuộc R
\(A=2x^2+4y^2+4xy-6z+10\)
\(=\left(x^2+4y^2+4xy\right)+\left(x^2-6x+9\right)+1\)
\(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)
Mà \(\hept{\begin{cases}\left(x+2y\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)
\(\Rightarrow A\ge0+0+1=1>0\)
Vậy ...
\(x^2-x+1>0\)
\(\Leftrightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn đúng)
\(\RightarrowĐPCM\)
a) Ta có:
\(x^2+2xy+y^2+1\)
\(=\left(x+y\right)^2+1\)
Vì \(\left(x+y\right)^2\ge0\) với mọi x và y
\(\Rightarrow\left(x+y\right)^2+1\ge1\)
\(\Rightarrow\left(x+y\right)^2+1>0\) với mọi x
b) Ta có:
\(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x
\(10^{10}\) không chia hết cho 9; \(10^9\) không chia hết cho 3, bạn xem lại đề
Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)
=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)
^_^
\(Q=x^2+6y^2-2xy-12x+2y+2017\)
\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)
\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)
\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)
Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)
\(\Rightarrow Q>0\)
Viết lại đề câu a)
Câu b)
\(A=4x^2+4x+15\)
\(=\left(2x+1\right)^2+14\ge14\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{1}{2}\)
Vậy : Min \(A=14\Leftrightarrow x=-\frac{1}{2}\)
\(x^2-3x+7=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}>0\)
Ta có \(A=4x^2+4x+15=\left(2x+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(x=\frac{-1}{2}\)
Vậy Min \(A=14\Leftrightarrow x=\frac{-1}{2}\)
Với mọi số tự nhiên n.
Ta có: \(n^2+n+1=n\left(n+1\right)+1\)
Do n; n + 1 là hai số tự nhiên liên tiếp
=> n ( n + 1) chia hết cho 2.
=> n ( n+ 1) + 1 không chia hết chia hết cho 2
=> \(n^2+n+1\)không chia hết cho 2
=> \(n^2+n+1\) không chia hết cho 4.
Giả sử như mệnh đề trên đúng :
n^2+1 chia hết cho 4
* Nếu n chẵn : n = 2k , k thuộc N
=> n^2 +1 = 4k^2 +1 k chia hết cho 4
* nếu n lẻ : n = 2k + 1
=> n^2 +1 = 4k^2 +4k +2
=> n^2 +1 = 4k(k+1)+2
k , k +1 là 2 số tự nhiên liên tiếp
=> k(k+1) chia hết cho 2
=> 4k(k+1)chia hết cho 4
=> 4k(k+1)+2 chia cho 4 , dư 2
=> 4k (k+1)+2 k chia hết cho 4
Sửa đề: \(A=3x^2-6x+4=3\left(x^2-2x+\dfrac{4}{3}\right)\)
\(A=3\left(x^2-2x+1+\dfrac{1}{3}\right)\)
\(A=3\left(x^2-2x+1\right)+1\)
\(A=3\left(x-1\right)^2+1>0\left(đpcm\right)\)