Tam giác ABC cân tại A. Qua A kẻ đường thẳng xy bất kỳ, kẻ BD và CE cùng vuông góc với đường thẳng xy (D,E thuộc xy)
CM: AD2+ AE2 không phụ thuộc vào vị trí của đường thẳng xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo lời giải tại đây nhé.
Câu hỏi của Phạm Ngọc Thạch - Toán lớp 7 - Học toán với OnlineMath
a, ^NAC + ^BAC + ^MAB = 180 (kb)
^BAC = 90
=> ^NAC + ^MAB = 90
^NAC + ^NCA = 90
=> ^NCA = ^MAB
xét tam giác CNA và tam giác AMB có : AB = AC do tam giác ABC vc (gt)
^CNA = ^AMB = 90
=> tam giác CNA = tam giác AMB (ch-gn)
b, tam giác CNA = tam giác AMB (câu a)
=> NA = BM (đn) và CN = AM (đn)
có : NA + MA = MN
=> BM + CN = MN
c, NC = AM (câu b) => NC^2 = AM^2
xét tam giác MB vuông tại M => BM^2 + AM^2 = AB^2 (pytago)
=> BM^2 + NC^2 = AB^2
mà AB không phụ thuộc vào xy
=> BM^2 + CN^2 không phụ thuộc vào xy
a) Vì góc BAC = 90 độ(gt)
suy ra : Góc A1 + góc A2 = 90 độ (1)
Xét tam giác ACE , có :
góc A + góc C + góc E = 180 độ ( Áp dụng tổng 3 góc trong một tam giác )
hay góc A + góc C + 90 độ = 180 độ
suy ra : góc A + góc C =180 độ - 90 độ
suy ra : góc A + góc C = 90 độ (2)
Từ (1) và (2) , suy ra :
Góc A1 = góc C1 (ĐPCM)
b) Xét tam giác ABD và tam giác ACE . Có :
Góc A1 = Góc C1 (CMT)
AB = AC ( gt)
Góc ADB = Góc AEC ( vì cùng bằng 90 độ )
Suy ra : Tam giác ABD = Tam giác ACE ( cạnh huyền - góc nhọn ) (ĐPCM)
c) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E . Có :
AB=AC(gt)
suy ra : BD = CE (1)
Mà : BD vuông góc với xy tại D (gt)(2)
CE vuông góc với xy tại E (gt)(3)
Từ (1), (2) và (3) . Suy ra :
DE = BD+CE ( ĐPCM)
hình thì các bạn bên dưới hoặc bên trên đã vẽ đúng hết rồi nha
Do xy không cắt đoạn BC
=> xy //BC
=> ECBD là hình chữ nhật'
Xét \(\Delta ABD\)và \(\Delta ACE\)có: \(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{AEC}=\widehat{ADB}=90^o\\EC=BD\end{cases}}\)
=> \(\Delta ABD=\Delta ACE\)
=> AE=AD
=> Tam giác ADE cân tại E
\(\widehat{ACB}=45^o\Rightarrow\widehat{ECA}=45^o\)
=> EC=EA
Tương tự: AD=BD
=> DE=AE+AD=EC+BD
a, Xét \(\Delta\)ABD và \(\Delta\)ACE ta cs :
AB = AC (gt)
^AEC = ^ADB = 900
CE = BD (gt)
=> \(\Delta\)ABD = \(\Delta\)ACE
b, Ta có xy không cắt BC
=> xy//BC
=> ^DBA= ^DAB (vị trí đồng vị)
=> \(\Delta\) BDA cân tại D
=> DA=DB
\(\Delta\)EAC cân tại E (cmt)
=> EA=EC
=> DE = AD + AC = BD + CE
ΔMAB vuông tại M
=>\(\widehat{MAB}+\widehat{MBA}=90^0\)
\(\widehat{BAM}+\widehat{BAC}+\widehat{CAN}=180^0\)
=>\(\widehat{BAM}+\widehat{CAN}=180^0-90^0=90^0\)
mà \(\widehat{BAM}+\widehat{MBA}=90^0\)
nên \(\widehat{CAN}=\widehat{MBA}\)
Xét ΔMBA vuông tại M và ΔNAC vuông tại N có
BA=AC
\(\widehat{MBA}=\widehat{NAC}\)
Do đó: ΔMBA=ΔNAC
=>MB=NA
Để A là trung điểm của MN thì AM=AN
mà MB=NA
nên AM=NA=MB
=>MA=MB
=>\(\widehat{MAB}=\widehat{MBA}=45^0\)
=>xy tạo với đường thẳng AB một góc 45 độ thì A là trung điểm của MN